Wednesday, December 30, 2015

Ultramarine Blue

Scrovegni  Chapel, Padua
Frescos and ultramarine ceiling, Giotto 1306.
In his fifteenth century handbook for painters, Cennino Cennini said, "Ultramarine blue is a color illustrious, beautiful and most perfect, beyond all other colors; one could not say anything about it, or do anything with it, that its quality would not still surpass." The ancient Egyptians used ultramarine to decorate the sarcophaguses of their pharos. Later, Marco Polo reported that it was made at a lapis lazuli mine in Afghanistan. Its name alludes to these far-flung origins: ultra-marine = "beyond the sea." Venetians were probably the first in Italy to learn the extraction technique and import the raw lapis. Producing the rich blue pigment from the rock was no simple task; success required an elaborate set of steps. Because of the difficulty, for a time, an ounce of ultramarine was valued more highly than an ounce of pure gold. In the legal contracts drawn up for commissioned paintings, patrons often stipulated exact amounts of the precious material for the artist to use. Beyond its beauty, its presence in a painting signaled the wealth of its owner.

In the last part of his book, L'Arte Vetraria, Antonio Neri presents his recipes for a variety of paints, including one for ultramarine. In glassmaking, drinking goblets adorned with delicate paint-work raised their value and elevated them into the realm of art. Unlike enamels, which fired into the glass, most paint, including ultramarine could not survive the furnace, requiring application only after a piece was finished. The number of different paint and lake recipes in the book indicates Neri's familiarity with the craft. This, combined with his willingness to use other painter’s materials like "smalt" in his glass formulations, hints at a still unknown chapter in the alchemist's life. Perhaps, for a period in Antwerp, he worked directly with fine artists. Here is Neri’s ultramarine:

Take fragments of lapis lazuli, which you can find plentifully in Venice and at low prices. Get fragments that are nicely tinted a pretty celestial color and remove any poorly tinted fragments. Cull the nicely colored fragments into a pot and put it amongst hot coals to calcine. When they are inflamed throw them in fresh water and repeat this twice. Then grind them on a porphyry stone most impalpably to become like sifted grain flour. 
Take equal amounts, three ounces each, of pine pitch, black tar, mastic, new wax and turpentine, add one ounce each, of linseed oil and frankincense. I put these things in a clay bowl to warm on the fire until I see them dissolve and with a stirring rod, I mix and incorporate them thoroughly. This done, I throw them into fresh water, so they will combine into one mass for my needs.  
For every pound of finely powdered lapis lazuli, ground as described above, take ten ounces of the above gum cake. In a bowl over a slow fire, melt the gum, and when it is well-liquified throw into it, little by little, the finely powdered lapis lazuli. Incorporate it thoroughly into the paste with a stirring rod.
Cast the hot incorporated material into a vessel of fresh water and, with hands bathed in linseed oil, form a round cake, proportionately round and tall. You should make one or more other of these cakes from the quantity of the material. Then soak these cakes for fifteen days in a large vessel full of fresh water, changing the water every two days. In a kettle, you should boil clear common water and put the cakes in a well-cleaned, glazed earthen basin. Pour warm water over them and then leave them until the water has cooled. 
Empty out the water and pour new warm water over them. When it has cooled, pour again, replenishing the warmth. Repeat this many times over, so that the cakes unbind from the heat of the water. Now add new warm water and you will see that the water will take on a celestial color. Decant the water into a clean glazed pan, pour new [warm] water over the cake and let it color [the water].
When it is colored, decant it and pass it through a sieve into a glazed basin. Pour warm water over the cake, repeatedly until it is no longer colored. Make sure that the water is not too hot, but only lukewarm because too much heat will cause the blue to darken, hence this warning, which is very important. 
Pass all this colored water through a sieve into the basin. It still has the unctuosity of the gum, so leave it to stand and rest for twenty-four hours; all the color will go to the bottom. Then gently decant off the water with its unctuosity, pour clear water over it and pass it through a fine sieve into a clean basin. 
Pass the fresh water through the sieve with the color stirred-up so that this color still passes through and therefore a great part of the filth and unctuosity will remain in the sieve. Wash the sieve well and with new water again pass the color through. Repeat these steps three times, which ordinarily leaves all the filth on the blue resting in the sieve. Always wash the sieve each time, cleaning it of all contamination. Put the blue in a clean pan. Gently decant off the water and then leave it to dry. You will have a most beautiful ultramarine, as I have made many times in Antwerp. 
The amount per pound of lapis lazuli will vary. It depends on whether the lapis has more or less charge of color and on the beauty of its color. Grind it exceedingly fine on the porphyry stone, as described above and you will succeed beautifully.  
For a quite beautiful and sightly biadetto blue that mimics ultramarine blue, take ordinary blue enamel and grind it exceedingly fine over the porphyry stone, as above. Incorporate it into the gum cake with the dose described above and hold it in digestion in fresh water for fifteen days as with the lapis lazuli. Follow the directions for the lapis lazuli, in all and for all, until the end. These blues are not only useful to painters, but they also serve in order to tint glasses par excellence.

Monday, December 28, 2015

The Kabbalah

Kabbalistic Sephiroth Tree,
from Portae Lucis, Paulus Ricius (Trans.)
Augsburg, 1516.
Kabbalah is a form of mysticism practiced within the Jewish tradition. In the early seventeenth century, there was a great deal of interest in Kabbalistic teachings among Catholic alchemists and natural philosophers. It was recognized that Christian alchemy had its roots in Hermetic and earlier Arabic societies, (the word "alchemy" itself is of Arabic origin.) It was thought that the Jewish Kabbalah was yet another branch of the same traditions of relaying secret knowledge by word of mouth. 

In early modern Florence, Italy, there were some interesting connections between the Kabbalah and glassmaker, alchemist and Catholic Priest Antonio Neri. Here is Neri’s own description, of Kabbalah in his 1613 manuscript Discorso: 
Some call it Kabbalah: in ancient times fathers communicated it to their children only by voice, preserving [this knowledge] for posterity, not for history, but as simple tradition. Others finally gave it the name of 'wisdom' [sapienza] because they rightly believed it was impossible, without this art, to know perfectly the nature and the qualities of natural bodies. In order to achieve the end they wanted, which was the perfection of the bodies, they separated the pure from the impure through various chemical operations, which can all be reduced to six principal phases.*
He goes on to describe basic chemical operations that were thought to be fundamental to purifying materials, and ultimately to the production of the Philosopher's Stone. These techniques are the same as practiced in Christian alchemy, and Neri uses them in his glassmaking recipes. Clearly, he had more than a passing knowledge of the subject, and it is interesting to speculate on how he might have come to learn about Jewish alchemical traditions. 

Early seventeenth century Florence contained a city within a city: the Jewish Ghetto. A walled perimeter encircled what is now the Piazza della Republica. This was the mandated home for all of Florence's Jewish population. Each night, entrance gates were closed and locked from the outside. Within the Ghetto, residents were allowed to live and warship freely, even maintaining a Synagogue. In the daytime, the gates were opened, and residents were allowed to go about their business and leave the city with special passes. Among the Ghetto's most prominent residents was the family of alchemist Benedetto Blanis (c.1580-1647.) Blanis served as librarian to Medici prince Don Giovanni. Giovanni maintained an alchemical laboratory in his residence, which was run by Blanis, located only a short distance from where Antonio Neri was living when he first worked at the Casino di San Marco.  

Don Giovanni maintained a close relationship with Neri’s benefactor Don Antonio de' Medici. So close, in fact that when two of  Blanis' relatives were implicated in a gambling scheme, Don Antonio hid them at his residence and then spirited them away, out of Florence, in his own coach until matters cooled off. Furthermore, Blanis came from a family of doctors who must have been known to Neri's father, royal physician to Grand Duke Ferdinando. Antonio Neri was probably a couple of years older than Blanis, if they did not meet through mutual connections with the Medici family, then perhaps they met on the street. The walk for Neri, between his living quarters near Santa Trinita, and the Casino laboratories would have passed around or through the Ghetto, and the walk for Blanis to Don Giovanni's palazzo on Via Parione took him past Neri's front door. The paths of the two men may have crossed, but there is not direct evidence.

Of course, in the absence of hard facts, there are many other possibilities of how Antonio Neri might have become acquainted with Kabbalistic tradition. By taking a look at Blanis and his connections to the Medici family, we can at least see an area of cooperation between Jewish and Christian alchemists in what we might otherwise assume to be an inviolable separation.** 

* “Discorso sopra la Chimica: The Paracelsian Philosophy of Antonio Neri”, M.G. Grazzini / Nuncius 27 (2012), p. 337.
For more on Blanis, see Edward L. Goldberg, The Secret World of Benedetto Blanis. (2011).

** This post first appeared here on 6 January 2014.

Friday, December 25, 2015

Sal Ammoniac

Ammoniac crystals, Fan-yagnobskoe coal mine, Tadjikistan,
Photo (c) A. A. Evseev.
Here we will examine "sal ammoniac," a common alchemical ingredient used by Antonio Neri in many of his early seventeenth century preparations. In its pure form, it is a colorless crystalline material and is known to chemists as ammonium chloride. It does occur as a (rare) natural mineral, but it was also manufactured as early as the thirteenth century, as noted by alchemist Albertus Magnus in his De alchymia.[1] Neither he nor Neri provides a recipe for sal ammoniac, but other sources indicate that it was made by allowing urine to putrefy with common salt. French investigators documented another method used in Egypt in the eighteenth century. This scheme involved burning the dung of animals who fed on spring grasses and then sublimating the ammoniac out of the resulting soot. Sublimation occurs when a heated material goes directly from a solid to a gaseous state without ever becoming liquid. Sal ammoniac has this property; when heated it turns to a gas and upon cooling, turns back to a solid.
The usefulness of sal ammoniac in alchemy stems from the fact that when dissolved in water, which it does easily, it immediately dissociates into equal parts of ammonia and hydrochloric acid, which in turn will dissolve some metals, including tin, zinc, iron and (reluctantly) lead. Its most famous use was as an additive to the stronger acid aqua fortis (nitric acid). Together the two formed aqua regis which was strong enough to dissolve gold. At the time that Neri was working, the only known way to dissolve the most 'noble' of metals (gold) was with the 'king' of acids (aqua regis). Neri puts this knowledge to use in his recipe for ruby-red colored glass made with pure gold. His description is light on details, but he does clearly direct the reader to dissolve the precious metal in aqua regis, then gently evaporate away the acid to obtain the red pigment.

Elsewhere in Neri's glassmaking book, L'Arte Vetraria,[2] he uses sal ammoniac in the production of "alemagna blue" paint and in the tinting of natural rock crystal. 

Another of Neri's creations requiring sal ammoniac was Chalcedony glass. It had swirls of every color the glassmaker could produce. He achieved this feat by making extensive use of aqua regis to dissolve a long list of metals. He then gently evaporated off the acid, leaving ultrafine powdered metals, which he added as pigments to the glass melt. 
With this powder, I made a chalcedony in a glass furnace in Antwerp that was then run by a most courteous gentleman; Mr. Filippo Gridolfi. This chalcedony gave rise to work so nice and graceful, that it emulated true oriental agate, and in beauty and delightful colors by far exceeded it.
Today, chemical factories produce vast quantities of the materials used by Neri in his glassmaking exploits and in far higher purities. Having unlimited quantities of every conceivable chemical compound at our fingertips makes it difficult to appreciate the physical labor involved by seventeenth century alchemists, both in the preparation of the glass and in the production of the individual ingredients. The chalcedony glass recipe cited above must have taken workers many, many hours to produce and must have cost a small fortune. 

[1] Magnus 1958.
[2] Neri 1612.
[3] Glauber and others used the term 'sal ammoniac' to describe a related chemical (NH4)2SO4. When mixed with aqua fortis this forms a nitric-sulfuric acid solution, which does not form aqua regis, and does not dissolve gold.
*This post first appeared here 22 August 2014.

Wednesday, December 23, 2015

Faux Pearls

Johannes Vermeer
"Girl with a pearl earring" (1665-6)
Natural pearls, found inside various seashells, have been prized and worn as jewelry since antiquity. The pearl is formed as a secretion of the mollusk; it is the animal's response to an irritant, perhaps a sharp grain of sand, which has become lodged in its tissue. The secretion, called "nacre" is the same material from which the mollusk builds and enlarges its shell. Natural pearls are rare; large, well formed ones are even more so. A famous legend claims that Cleopatra used pearls to win a bet with Marc Antony: that she could spend ten million sesterces on a single meal. She literally drank pearls that had been ground up and dissolved in wine. Because of the difficulty in obtaining pearls, and their high demand among the wealthy, it is not surprising that like artificial gems, artificial pearls have enjoyed a brisk trade throughout history.

In Antonio Neri's era, the early seventeenth century, a number of recipes used glue, egg whites or other organic materials to simulate pearls. These had the obvious disadvantage of being susceptible to degradation by moisture and physical handling. Another alternative was to simulate pearls with glass, and on this count, Neri does not disappoint. Recipe number sixty in his 1612 book L'Arte Vetraria gives his prescription for artificial pearls. Here it is in its entirety:



In fused and clarified cristallo, add three or four portions of tartar from wine dregs. You must thoroughly calcine this tartar to a white color. Stir it thoroughly into the glass, and continue to add more tartar, also well calcined until it is white. Add four to six more portions, always stirring the glass thoroughly, continuing thus until the cristallo takes on a pearl color. In this recipe, I cannot give exact rules, because it is a matter of experience, which is gained through experimentation. Once obtained, you must work the color quickly, because it will dissipate. I have practiced and experimented with this method many times.

"Cristallo" is the exceptionally clear glass the Venetians developed, perfected and were renowned for throughout Europe. "Tartar" is a crystalline growth that forms on the inside of wine casks, what we now know as "cream of tartar." Occasionally, one might spot crystals at the bottom of bottles of wine. They are a rich source of potassium. Neri, the Venetians and others had used tartar as a glass flux over a period of centuries. Here, however, he is not using it as a flux, but as a colorant to give the glass the pearl's shimmering appearance. His claim to making many batches of this glass implies large numbers of artificial pearls were in circulation. Our glassmaker presents a second recipe, which does not make any mention of pearls, but oddly may have much more to do with the evolution of reproducing these treasures of the sea. Recipe number 114 is entitled "The Way to Tint Glass Balls, and Others Vessels of Clear Glass, From the Inside, In All Kinds of Colors, So They Will Imitate Natural Stones." Here, Neri spreads fish-glue on the inside surface of a blown globe of clear glass, followed by various pigments.

Even in his time, artificial pearls found their way into royal courts and onto the canvasses of master painters. The fashion-setting monarchs of France and Britain Catherine de' Medici and Elizabeth I were famous for their extravagant love of pearls. Elizabeth famously purchased faux pearls from Venetian glassmakers to adorn her garments. She commissioned many portraits donning her pearl studded creations. Referring to the famous painting by Johannes Vermeer, Lloyd Schwartz recently observed, "[T]he scholarship on Girl with a Pearl Earring reveals that the pearl isn't really a pearl […] the famous pearl is probably just glass painted to look like a pearl."* It is interesting to note that the painting was executed in 1665-6, within five years after three reprints of Neri’s book, two in Italian one in English, and only a couple of years before a Latin edition printed in Vermeer's own country.

Around 1680, a Parisian maker of rosary beads invented a type of artificial pearl consisting of a small hollow glass bead, painted on the inside with the iridescent discharge of fish scales mixed with glue. He then filled the beads with wax. Jacquin had apparently rediscovered the shimmering pearly residue of a specific fish. His innovation fueled a new industry; he called the precious pigment "essence d'orient." But the material had already been employed in eastern France in 1656 and according to other reports as early as the reign of Henry IV of France (1572–1610), which closely coincides with Antonio Neri's own lifetime. By 1716, scientists were investigating essence d'orient under a microscope. Rene Antoine Ferchault de Reaumur reported tiny, perfectly formed rectangular plates that reflect the light to cause the shimmering.**

Perhaps more interesting than who discovered what, is the exchange of ideas and the overlap of interest between an Italian alchemist, a British queen, a Dutch painter, a French jeweler and a biologist.


* Also see Anthony Bailey, A View of Delft: Vermeer Then and Now (London: Chatto & Windus, 2001), p. 123, 124.
** For an English summary see The Edinburgh Philosophical Journal October 1839-April 1840 (Edinburgh: Adam & Charles Black, 1840), v. 28, p. 114, 115.

Monday, December 21, 2015

Rise and Fall

"Merry Company," (1623)
Gerard van Honthorst
The first decade of the seventeenth century was a golden era for glass in Tuscany. The Venetian techniques brought to the region by Grand Duke Cosimo de' Medici in the 1570s had been assimilated. The pioneering work of his son, Francesco, in cross pollinating different crafts under one roof, was by now bearing fruit in unique items that included the handiwork of glass artisans. Grand Duke Ferdinando understood the value of glass as a source of prestige and was willing to invest in it. This was the environment in which Antonio Neri first learned to make glass. Delicate drinking glasses were the toast of the aristocracy throughout Europe. The material was critical to the advancement of chemistry, medicine and by the end of the decade astronomy. 

In 1602, Antonio Neri came to work in the shop of Niccolò Sisti in Pisa. While Sisti was making fancy glassware for the Medici court, the nearby Coscetti firm was supplying Pisa with everyday items. Coscetti made glassware for private homes, but also innkeepers, spice and perfume sellers, winemakers and a baker among others. Their wares included cruets for oil, saltcellars, carafes, drinking glasses, containers for holy water, reliquaries, gilded Venetian style cups and English style flasks. 

By the second decade, momentum started to shift and before long, the glass industry in Tuscany fell on hard times. Apparently the demand for glass could not support the number of factories that had started and the rapid succession of leadership in the duchy added uncertainty to patronage of the arts in general. 

Another factory in Pisa was run by Giovanbattista Guerrazzi, who had acquired the exclusive right to make Venetian style cristallo from Neri's old employer Sisti. In 1623, Guerrazzi had problems of a different sort, not directly related to the sales of glass. He appealed to Pisa’s Office of Rivers and Ditches, pleading with them to modify a recent ruling. He explained that he owned three houses next to his furnace, one for his family and the others functioning as sales space and housing for his workers. Since he was the exclusive maker of cristallo, he had employed a number of girls and women to decorate the delicate glassware, and a constant stream of the nobility showed up to watch the work being done. Guerrazzi's problem was that the Magistrate of Public Decency had recently published a list of seven places where women of "ill repute" were allowed to stay. One of these was located next door to his glassmaking operation. He begged for a change in the ruling, to move his new neighbors elsewhere.

The outcome of his appeal is not known, but Guerrazzi was succeeding in the glass business, and at the same time accelerating the demise of his competitors. He bought-out and demolished the furnaces of a number of other glassblowers and planned the same fate for the Coscetti operation, putting all the craftsmen there out of work. In the mid 1620s, after a quarter century of operation, the fires under Coscetti furnace were allowed to go out forever. Furnaces at Leghorn, Pistoia and Prato had shuttered, leaving only the one furnace in Pisa, two in Florence and two at the castle of Montaione. 

*This post first appeared here on 12 Dec 2013.

Friday, December 18, 2015

Neri the Scholar

Francesco Bartolozzi, Laurentian Library in the 18th cent.
(click to enlarge).
Whether one's chosen field was medicine, law, religion or alchemy, in the late fifteenth and early sixteenth century, books played as important a role in education as they do today. The schooling of Florentine priest and glassmaker Antonio Neri was no exception. The details of his training at seminary remain elusive, but there is no mistaking that his introduction to alchemy occurred well before his ordination as Catholic Priest around 1598. [1] Since his father was the celebrated physician to Grand Duke Ferdinando, there is a good chance that Antonio had access to wide variety of Medici resources, not the least of which was the famed Laurentian Library, designed by Michelangelo and run by Neri family friend Baccio Valore. [2]  

But we need not look as far as the Laurentian, which was only a ten-minute walk from the Neri household. Closer to home, in fact inside his home, there was the extensive library of his own father. At the turn of the century, it contained 477 volumes, spanning poetry, philosophy, the Greek classics, medicine, pharmacology, surgery, religion, even grammar. [3] We know this thanks to an inventory taken at the time of the physician’s death, leaving a list of titles that has survived the ages, even if the volumes themselves have long been dispersed or lost. At the time, outside of the royal family, it was probably one of the largest collections of books in private hands in Florence. Neri’s father had himself been in charge of the revision of the Ricettario Fiorentino, [4] the gold standard of doctors and apothecaries throughout Europe for medicinal prescriptions, published in 1597 and again without revision in 1623.

Antonio Neri is known best as an artisan who worked with his hands. No evidence has been found to place him at a specific monastery or university classroom. Nevertheless, what emerges from the details that we do have is a picture of a man who was steeped in a literary, scholastic tradition from an early age. His Mother’s father, Ser Francesco, held a degree in law as did her grandfather and great-grandfather. [5] Antonio’s father held a degree in medicine from the “Studio Fiorentino,” the forerunner of what today is the University of Florence.[6]  In addition, it would be reasonable to assume the household library included titles once owned by his grandfather Jacopo, a noted barber-surgeon who was known among the literati. It has been speculated that Jacopo’s best friend in the world [7] was poet Lodovico Domenichi, who wrote of his friend in a sonnet:

Marvel about you the people do,
Over how, one might say, almost stupidly,
So many lecturers and scholars admire you. [8]


Domenichi who had been appointed court historian by Grand Duke Cosimo I de’ Medici, goes on in the sonnet to name a list of mutual friends that includes poets, playwrights and intellectuals of the day.

In a similar way —that is through legal records—we know the contents and titles of the alchemical library of Neri’s sponsor, Don Antonio de’ Medici at the time of his death in 1621. These included several manuscripts by Neri himself, as well as his book on glassmaking. [9] However, one title did escape the attention of the bean-counters; sixty years after Don Antonio’s death, at the death of his son, Giulio, a handwritten book of recipes by Neri was found along with a box of elixirs. “Among them there was a booklet, entitled: Material of all the compounds of Priest Antonio Neri; there is a red dustcover, which says “experiments.” [10]

In his twenties, after a couple of years of making glass in Florence, Neri moved to Pisa where he assisted at the Medici’s furnace run by Niccolò Sisti. Pisa was home to a thriving university, with ample study possibilities, and Neri was proving himself a life-long researcher. From Pisa, in early 1604 he embarked on a seven-year long residence in Antwerp, where he stayed with his friend Emmanuel Ximenes. Ximenes was one of the wealthiest men in Flanders and maintained an extensive library in his palace. He owned many volumes devoted to the chemical arts. [11] In fact, his collection of books was probably the largest in the entire region. [12] Here too, the full list of books is preserved in an inventory compiled after the death in 1617 of Emmanuel’s wife, Isabella da Vega. 

Upon Antonio’s return to Italy, he published his glassmaking recipes in L’Arte Vetraria and then appears to have focused his attention on chemistry and medicine. In the last manuscript he is known to have written, within a year of his death, he writes of a recipe copied “from an old book, here in Pisa” in 1613. 


[1] In his manuscript Tesoro del Mondo devoted to “all of alchemy” (Neri 1598-1600) Neri self-identifies as a priest.
[2] Bartolomeo di Filippo di Niccolò Valori [il giovane] (1535–1606). He was keeper of the Laurentian, steward of the Medici herbal (simples) garden and an early director of the Accademia delle Arti del Disegno. He was a personal friend to Antonio Neri’s father and godfather to his first child (Antonio’s older sister) Lessandra.
[3] Bec 1984, pp. 299–310.
[4] Neri, Benadù, Rosselli, Galletti 1597, 1623.
[5] Ser Francesco di Ser Niccolò di Ser Antonio Parenti (1519 - ?)
[6] Fathers medical degree ref.
[7] . Garavelli 2004, p. 82, n. 186.
[8] Domenichi 1555, Stanza 7.
[9] Covoni 1892.
[10] Ibid p. 193.
[11] Duverger 1984.
[12] Dupré, Lüthy 2011, p. 272; Göttler, Dupré 2009.
* this post first appeared here on 31 Dec 2014.

Wednesday, December 16, 2015

Roasting the Frit

Diderot & d'Alembert, L'Encyclopédie (1772)Raking Out Roasted Frit
Making glass from raw materials involves several steps. In his 1612 book on glassmaking, L'Arte Vetraria, Antonio Neri breaks the process down into parts so that, "given a bit of experience and practice, as long as you do not purposely foul-up, it will be impossible to fail." Pure white sand, or preferably quartz river stones which Neri calls "tarso" is broken up and pulverized into a fine powder. The initial work can be done by heating the stones in a furnace, then dropping them into a vat of clean cold water, where they will fracture due to the thermal shock. The process was often repeated multiple times. From there, the pieces are pulverized in a stone mortar and pestle. Stone, because metal tools would contaminate the quartz, and in the end tint the glass. Finally, a powder is obtained by grinding with a stone tool on a flat granite "porphyry stone." This powdered quartz is the main ingredient of glass.

The second critical ingredient is the flux, what Neri calls "glass salt" or "soda." This can be obtained from mineral sources, but European glassmakers in the seventeenth century extracted all their salt from certain plants. The powdered quartz was mixed with the salt and a third ingredient, which is critical, lime. Lime is simply calcium oxide used by builders to make cement. It is nothing more than pulverized seashells roasted to a high temperature. Neri advises using two pounds of lime for every hundred pounds of salt. He specifies that it should be added to all his frit recipes, but it is not clear that he understood its critical importance; without lime, the glass would be subject to attack by mere water, eventually decomposing. This mixture of soda, lime and silica when heated in a kiln would chemically react forming "frit." The combined materials were raked around in a kiln for a long period (many hours) and finally formed nut sized pieces. It was cooled and heaped into piles in dry cellars where it was aged for a time. This is where some chemical "magic" in glassmaking takes place. The glass salt or soda dramatically lowers the melting temperature of the quartz, all the way down to a point that was easily achieved in a wood fired furnace. When a batch of glass was made, the aged frit was then melted in furnace crucibles and skimmed to remove excess salt, which floated on the surface; it could foul the glass, and smelled terrible. The melted glass, now ready to work, was sometimes colored and finally made into objects by gaffers. 

Neri obtained his glass salt from products shipped by traders from the Levant (eastern Mediterranean). It was supplied as the dried, partially charred remains of special plants that grow in arid seaside conditions; 'Kali' and 'Soda'. Shipping them this way cut down on weight and volume, and prevented rotting. These plants contain large amounts of sodium carbonates. This is a white powder, chemically identical to what we know as "washing soda." He advises, 
In buying either of these make sure it is richly salted. This may be determined by touching it with the tongue in order to taste its saltiness; but the surest way of all is to do a test in a crucible and to see if it contains much sand or stones, a thing common in this art and very well known by glass conciatori.
He crushes any large pieces of the product in a stone mortar, and sifts the result through a fine screen, ensuring that most of what remains is salt.  
As the common proverb of the art of glassmaking says: a fine sieve and dry wood bring honor to the furnace. Then with any of these sodas, 100 pounds of soda ordinarily requires 85 to 90 pounds of tarso.
Neri sets up large cauldrons of clean water over brickwork stoves, adds the plant product and boils the water. He strains the insoluble parts out and reduces the liquid by evaporation until crystals of the salt start to form on the surface. He skims these off and continues the process. Finally he carefully dries the product. Our glassmaker describes several variations of this process, including one in which he takes extreme measures to ensure the purity of the salt and clarity of the finished glass. In all, this is a task that could easily take several weeks to perform for the amount of frit to fill a single pot for the gaffer to work.

Not content with the established materials, our glassmaker experimented extensively with other plants: 
[U]se the husks and stalks of fava beans after the farmhands have thrashed and shelled them. With the rules and diligence prescribed for the Levantine polverino salt, extract the salt from this ash, which will be marvelous, and from which a frit can be made using well-sifted white tarso, as is described throughout this work. A very noble frit will result, which in the crucible will make a crystal of all beauty. The same may be made from the ashes of cabbages, or a thorn bush that bears small fruit, called the blackberry, even from millet, rush, marsh reeds, and from many other plants that will relinquish their salt. *
*These other plants produce potassium carbonate salts with similar properties to sodium carbonate.
** This post first appeared here 9 December 2013.