Monday, September 16, 2019

Scraping the Barrel

4th century BCE philosopher Diogenes
(supposedly lived in a wine barrel)
by Gaetano Gandolfi (1792)
To seventeenth century glassmaker Antonio Neri, "tartar" was a well-known byproduct of the winemaking process. If we chill wine or grape juice to below 50 degrees (10 deg. C.) crystals of tartar start to form and once they do, then tend not to dissolve back, even at room temperatures. Today, these crystals are commonly found in a powdered form, in kitchen cupboards as "cream of tartar." Bakers and cooks use it to stabilize whipped egg whites, and it has a number of other applications. 

Neri used tartar in his glass to add sparkle, a trick known to Venetian glassmakers as early as the 1400s. It was obtained from the dregs at the bottom of wine barrels. To understand how this works, it is useful to know that Florentines, Venetians and most southern Europeans made glass from crushed up quartz pebbles or sand mixed with a specific flux known as "glass salt." This salt was rich in sodium carbonates, which greatly reduced the melting point of the quartz. It allowed artisans to work the material at the temperatures easily achieved in their furnaces. Tartar turns out to be very similar, except that it is rich in potassium rather than sodium. 

Potassium atoms are larger and heavier than sodium atoms and when light passes through a piece of potassium-fluxed glass, it bends and refracts more. This effect is not as pronounced as when adding the even heavier lead to form fine crystal, but it still adds noticeable sparkle to finished pieces. Using all tartar as a flux has the undesirable effect of reducing the workability of the hot glass. Outside the furnace, it becomes stiff quicker and artists have less time to create fancy shapes and forms. The solution to this dilemma is to use a mix of sodium and potassium fluxes together, which is exactly what Neri did. 

In his 1612 book L'Arte Vetraria, he shows how to prepare tartar and then adds it to a number of his glass recipes saying, "The tartar is the secret way to produce more salt and to make cristallo which is whiter and of rare beauty." Here is Neri’s prescription:

To make Purified Tartar Salt you should obtain tartar, which is also called gruma, from barrels of red wine in which it forms large lumps, however do not use powder. Roast it in earthenware pots amongst hot coals until it becomes calcined black and all its sliminess is roasted away. It then will begin to whiten, but do not let it become white, because if you do the salt will be no good.  
Calcine tartar this way: put it in large earthenware pans full of hot common water, or better yet in glazed earthenware pans then made to boil on a slow fire. You should do it in such a way that in two hours the level of the water will slowly decrease to one-quarter, at this point lift it from the fire and leave it to cool and to clarify. Now decant off the liquid, which will be strong lye and refill the pans containing the remains of the tartar with new common water. In the way stated above, boil as before and repeat the procedure until saltiness no longer charges the water. 
At this point, the [decanted] water is impregnated with all the salt. Filter the lye clear and put it in glass chamber pots to evaporate in the ash of the stove over a slow fire. In the bottom, white salt will remain. Dissolve this salt in new hot common water and leave it in the pans, letting it settle for two days. Then filter it and return it to chamber pots to evaporate over a slow fire. In the bottom, a much whiter salt will be left than the previous time. Now dissolve this salt in fresh hot common water and leave it to settle for two days. Evaporate, filter and repeat everything as before. Overall, repeat this procedure four times to dissolve, filter and evaporate the salt of tartar. This will make the salt whiter than snow and purified from the vast majority of its sediment.
When mixed with sifted polverino, or rocchetta, with its doses of tarso [quartz] or sand, this salt will make a frit that in crucibles will produce the most beautiful crystallino and common glass, which one cannot make without the accompaniment of tartar salt. Without it [tartar], good fine crystallino can be made, nevertheless with it, it will be the absolute most beautiful.

*This post first appeared here on 16 May 2014.

Friday, September 13, 2019

Pebbles from Pavia

A Bridge on the River Ticino, near Polleggio,
William Pars (1742‑1782).
In the sixteenth and seventeenth century, a type of glass known as 'cristallo' was the absolute pinnacle of the art. Its recipe was invented in Venice and guarded there as a state secret. Its name derived from the mineral it was designed to mimic: rock crystal. As clear as water, rock crystal was valued since ancient times for carving into cups, vessels and other objects of art. Today we know it as a form of quartz, but in Roman times it was thought to be a type of frozen or coagulated water.

In the early 1600s, when Antonio Neri started making glass in Florence, the grand duke's craftsmen were routinely carving this hard and brittle rock crystal into complex thin shapes, a process that took great skill and effort. Due to the expense involved in producing a piece, this art was the exclusive province of extremely wealthy individuals. Thus, objects made from rock crystal were considered markers of status. The recipe for cristallo glass was a very great secret indeed, but its real value lay in the specific materials used. Even if the recipe found its way out of Murano, which it inevitably did, the Venetian's tight trade network ensured a monopoly on many of the ingredients. It is said that even the furnace crucibles for cristallo were made from a specific clay gathered in Constantinople.

Cristallo was not only exceptionally clear, but for the artist it had working properties like no other glass. Thin, complex shapes were possible in cristallo that could never be duplicated in common glass. The secret for making cristallo came to Florence in the late 1560's, only a few years before the birth of Antonio Neri, who would learn the techniques and go on to publish the recipe for the first time anywhere.

 After protracted overtures, which involved diplomats, spies and the archbishop of Florence, Grand Duke Cosimo I managed to negotiate with the Venetian Doge and Senate for a Muranese master and two assistants to come to Florence and teach the way to make cristallo. It is likely that the raw materials were all purchased through the Venetians, at least initially. By the time Neri wrote his book, L'Arte Vetraria, in 1612, the Florentines were already finding alternate sources. In Venice, the ingredients of cristallo were prescribed and controlled by strict laws. The Florentines did not have this constraint and were free to experiment.

In the second recipe of Neri's book, he spills the beans on where the Venetians procured the single most important ingredient for cristallo, the pure quartz stones which account for the material's clarity. Notice in the following excerpt that Neri mistakenly thinks that the white river stones are a form of marble and also notice the alchemical language he uses to describe the process in which the stone is "transmuted" into glass.
When you want to a make cristallo that is beautiful and fully perfect, see that you have the very whitest tarso. At Murano they use pebbles from Ticino [Pavia], a stone abundant in the Ticino River. Tarso, then is a species of very white hard marble [quartz]. 
In Tuscany, it is found at the foot of Mount Veruca in Pisa, at Seravezza, at Massa near Carrara, and in the Arno River both above and below Florence. In other places as well, common stone is often recognized, which is seen to have the same qualities as tarso; it is very white and does not have dark veins, or the yellowish appearance of rust, but is spotless and pure. Take note that any stones that will spark with a piece of steel or strike plate, are apt to vitrify and will make glass and cristallo. All those stones that do not make sparks with a piece of steel or striker as above will never vitrify. This serves as advice for being able to distinguish stones that have the ability to transmute their form, from those that cannot be transmuted. 
Start with this same tarso, as fair and as white as possible. Grind it finely into powder in stone mortars. Do not use bronze or any other metal for this purpose or the stone will take in the color of the metal, which then would tinge the glass or cristallo, and make it imperfect. The pestle must be iron by necessity but at least the other materials will not have the possibility of causing any effect. Pulverize the tarso well and sift with a fine sieve. It is important that the tarso is ground as finely as flour, so that it will all pass through a fine sieve.
* This post first appeared here on 30 May 2014. 

Wednesday, September 11, 2019


Antique Apothecary jars,
cobalt blue glass.
As best as I can remember, the first time that I really noticed glass was at four or five years old, at my grandmother's house in Queens, New York. The sunlight filtering through a low window caught my eye with a brilliant blue glint through a small cobalt glass bottle.  My grandmother held it up to the light for me and I was enchanted; transported into a realm of exquisite pure color.

Little did I know that the spell cast on me at such a young age had been cast on Egyptian pharaohs of the eighteenth dynasty and on Persian princesses, two thousands years ago, by their cobalt glass jewelry. In all three cases, the deep rich blue of cobalt oxide glass was responsible. Today, the source of ancient Middle Eastern cobalt is unknown, possibly West Africa, but more recently, in the Renaissance; it was mined in Hungary, in Bohemia and in German Saxony, where it was called "zaffer," after its sapphire color.

Legend tells that sixteenth century silver miners in Germany amassed a hoard of smaltite thinking it was silver ore. When they tried to smelt it, the arsenic which cobalt ores always have, evolved highly toxic fumes that made them sick. Discouraged and maligned, they said the product of their labors was cursed by goblins; they named it "kobald" (cobalt) after the evil spirits. The theme of 'evil spirits' (toxic fumes) was common in mining circles. A mythology persisted from ancient times up until the eighteenth century that divided the spirits into two groups; mischievous, and malevolent. The mischievous spirits played tricks on the miner's perception and equipment, the malevolent spirits could stop a man dead in his tracks, literally. 

Regardless of the difficulties both terestrial and otherwise, a strong market developed for the newly found "kobald" among artists for paint, potters for glazes, and glassmakers. The Saxon miners gained a reputation for producing the finest zaffer.

In his glassmaking book L'Arte Vetraria, Antonio Neri describes his method for purifying and preparing zaffer for use in glass. It is a recipe that would stand the test of time, still quoted by authors into the nineteenth and twentieth century.

To Prepare Zaffer, Which Serves for Many Colors in the Art of Glassmaking

You should get zaffer in large pieces and put it in earthenware oven-pans holding it in the furnace chamber for half a day. Then put it into iron ladles to inflame it in the furnace. Heat it well, then take and sprinkle it with strong vinegar. When cold, grind it finely over a porphyry stone into glazed earthen pots with hot water. Then wash more water over it always leaving the zaffer to settle in the bottom.

Now gently decant, to carry away the sediment and impurities of the zaffer. The good part and pigment of the zaffer will remain in the bottom. The pigment remains are now prepared and purified to be far better than it was at first, which will make clear and limpid pigment. This zaffer should be dried and kept in sealed vessels for use, which will be much improved over the original.

Until the mid 1700s zaffer had been associated with silver and copper mines, and was commonly thought to be a derivative of copper. It was Swedish chemist Georg Brandt who finally isolated the new metal, and gave it the name which honors the miners and the subterranean spirits which still can cast a spell on us through its deep pure blue color in glass.

* This post first appeared here in a slightly different form on 4 April 2014.

Monday, September 9, 2019

Washing Molten Glass

Washing, sorting and carrying cullet
Denis Diderot 1772
One of the continuing frustrations with the study of glassmaker Antonio Neri, is that there is no known example of his glass to be found anywhere. It is very possible that pieces do survive, but so far, none has been tied to him or his recipes. At first it might seem to be a straightforward task of analyzing the composition of likely candidates and comparing the results to his formulas. Unfortunately, this plan does not hold water. Even if a recipe for glass was followed exactly, the result will have a different composition from the starting materials. One reason is that before the hot glass was crafted by artisans, a new batch was typically "washed" by flinging ladlefuls of molten glass into great vats of cold, clean water. In this process, excess flux is dissolved in the water and left behind. In his 1612 book L'Arte Vetraria Neri wrote:
After a while, when the glass is well fused, take it out of the crucibles and throw it into large earthenware pans or clean sturdy wooden tubs filled with fresh water. This step of throwing the glass into water has the effect of causing the water to remove a kind of salt called Alkali salt [glass gall], which ruins the cristallo and makes it dark and cloudy. So while it is still being worked let the glass spit out this salt, a substance quite foul, then return it to clean crucibles. Carry out this flinging into water repeatedly as necessary. In order to separate the cristallo from all its [alkali] salt, this should be repeated to the satisfaction of the furnace conciatore [glassmaker].
This step, he assures us, is absolutely necessary for the finest glass, but also helps improve the most common glass:
If you throw it into water at least one time, what you will have will be beautiful and clear. The same is true for common glass, which once brought to perfection you should return to the crucibles for use. It will be bright, fine and quite satisfactory to work in those jobs that require it. […] when a more than ordinary fine glass is desired it is necessary. Beyond becoming very white[clear], it calcines and clarifies nicely with few impurities.
This technique becomes even more critical for Neri's lead crystal, in fact, any glassmaker who ignored this step for a leaded glass did so at risk of a major disaster.
In a few hours everything will have clarified, now purify it by throwing it in water. Inspect the glass carefully before returning it to the crucible. All lead precipitating out of the glass must be removed with diligence, throwing it away, so that it does not make the bottom of the crucible break out, as can happen. Return the glass that was thrown in water to the crucible and leave it to clarify for a day.
In addition to washing the glass, sometimes the top layer of a melt was skimmed off and discarded because it contained contaminants that floated to the surface. To complicate matters further, molten glass can stratify in the crucible, meaning the composition might vary from top to bottom and from the center of the pot to the edges. 

Scientists and historians have collaborated to see what can be learned from period samples of glass. When attention is focused on the composition of a single type of glass, like Venetian style cristallo for example, one might expect a wide variation. The opposite turns out to be true. Even with all of these factors conspiring to change the glass composition, remarkably the analysis shows it is quite difficult to tell apart glass that was known to be made in Florence from that of Antwerp or Venice. Recent efforts have centered on identifying minuscule amounts of trace materials in the old glass that were unique to the raw ingredients of a specific region. Meanwhile, Antonio Neri's glass continues to elude us, even though it might be sitting on the shelves of museums around the world, right in front of our eyes.

* This post first appeared here on 9 May 2014.

Friday, September 6, 2019

Primordial Matter

16th century Mining practices, 
from Agricola, De Re Metallica
In the early seventeenth century, Florentine priest Antonio Neri wrote the first printed book devoted to formulating glass from raw materials. His work is called L'Arte Vetraria, which translates to "the art of glassmaking." The book became quite famous and this is what he is remembered for today, yet he considered himself first and foremost an alchemist. In previous posts, we have explored the commonalities between glassmaking, medicine and the apothecary's trade. Another field closely connected to alchemy was mining. 

In the seventeenth century, the earth was considered a living entity; metals were found to occur in "veins" which were thought to grow and once mined, regenerate over time. The metals themselves were thought to undergo a maturation process. Primordial material left over from the creation of the world exerted its influence deep in the ground. Nurtured by the earth, under the influence of the suns rays, a process took place that eventually turned base metals into the more noble silver and gold. As far as Neri was concerned, alchemy was the art of imitating and enhancing natural processes that were already at work. In his manuscript Discorso, he writes:
I feel that the more perfect the art the most simple it is; so the authors [of alchemy] most unanimously agree that the ‘primordial material’ [prima materia] of the [philosopher’s] stone is something vile [base] and not bought with money, but easy to find. Moreover, the manner of work must imitate nature, which in order to produce gold makes use of the singular or simple material, which is the seed of gold, of a single vessel, which is the ‘womb of the earth’ [seno della terra] and of a single natural and vital fire, which is the sun.*
Elsewhere in the manuscript, Neri discusses several specific mines. He discusses the use of "vitriol" water that flowed in certain mines and how it could be used to transmute iron into copper. He discusses an unidentified mine "some distance from Leiden" (possibly in Limburg) and another in Slovakia in the town of Smolnik. It is reasonable to think that Neri visited these places himself. A third location, which he purposely keeps under wraps, is where he obtained "immature" gold that he was able to "multiply" through alchemical manipulation. With a certain disappointment, he writes "To this day I have never found another mine like it, and therefore suitable for this purpose." Clearly, he spent a significant portion of his time looking. He advises:
The gold mines are not all in the same condition, which is well understood for those of silver and all the other [metals]. Some are already perfect, in which nature has done what it could do and reduced the gold to its maturity, while other [mines] are still imperfect and in their infancy*
In his work for Medici prince Don Antonio in Florence, Neri's assistant/disciple was Agnolo della Casa. Della Casa took copious notes of Neri's experiments, and literally filled thousands of pages in notebooks that are today held by the National Library in Florence. Much of this material dealt with the transmutation of metals, and as we have seen Neri was not only concerned with materials, but with their specific place of origin. His first manuscript was titled "Treasure of the World, By Priest Antonio Neri – which [covers] the whole of alchemy with various illustrations, not only of the furnaces, vessels and chemical instruments but with other illustrations concerning the mining of all the metals." For he and his colleagues, mining and alchemy shared theoretical connections but also familial ones. Della Casa had a relative named Filippo Talducci della Casa (1543- c.1615), who was a celebrated alchemist and mining engineer, working in Prague and Krakow for the Holy Roman Emperor. Last but not least, there was also a practical connection. Mining provided many of the raw materials used in Antonio Neri’s glassmaking activities.  

* For a full discussion of Neri’s Discorso, see M. G. Grazzini, “Discorso sopra la Chimica: The Paracelsian Philosophy of Antonio Neri”, Nuncius 27, pp. 411-467.

** This post first appeared here 30 April 2014.

Wednesday, September 4, 2019

Reticello Glass

Reticello by Aaron Tate (detail),
Photo by David Lindes.
In fine art of the early twentieth century, ‘cubist’ painters and sculptors caused a sensation by pioneering a style that was fluid and emotional yet rigorously geometric. Earlier still, eighteenth century Baroque musicians thrilled audiences with ‘counterpoint’; music that was melodic and harmonious yet structured with an almost mathematical precision. The recurrence of similar themes in widely differing arts is perhaps not so surprising. When successful, these are themes that resonate deeply within us; they amplify what is common to our nature and remind us that we are in the world together. 

In sixteenth century Venice, a form of glasswork emerged that anticipated these juxtapositions to similar popular acclaim. In fact, the technique of ‘reticello’ went on to become an enduring trademark of Murano technical skill and artistry. To this day, well executed pieces of reticello glass are coveted by collectors and displayed with great pride. 

The form is characterized by a transparent glass base which is embedded with a network of crisscrossing threads of opaque glass, forming a lattice of diamond shaped pockets. Classically, white 'latimo' glass was used in a clear 'cristallo' base.The overall effect is reminiscent of fine lace or of fishing net, both of which are strongly evocative in Venetian culture. When executed in the classical technique of the island’s glassblowers, each diamond in the pattern contains a single bubble of trapped air, perfectly centered and uniformly sized. 

In general, the latticework theme in art traces to much earlier times. It is common in Hellenistic and Islamic art. To an extent it is a natural consequence of mosaic making. However the application of the pattern in glassblowing requires a completely different approach and a complex series of steps. First a ‘filigrana’ bubble is formed. To accomplish this, a series of pencil thin glass rods called ‘canes’ are laid side by side, touching each-other, in a pan ('piera' in Venetian, 'pietra'=stone in Italian) and partially fused together in the furnace.[1] Each cane is made of transparent glass with a core of opaque glass (a thread) running its entire length. Glass artist Emilio Santini writes:
On Murano, the "piera" is coated with a thin layer of clay from the laguna marshes. This is rich in salt and does not stick too much on the glass even if overheated. Then they preheat the, piera (called a 'plate' in the US) to dry the clay. While it is still hot but not scorching they lay down the canes so they are partially warmed before they go in the furnace. Remember that they are not annealed [and could easily shatter from thermal shock]. Then two little square metal pieces are placed at the two ends to hold the cane in place. These are called fereti (V) ferretti (I) . Some of these same terms are also used in the US by skillful glass blowers.[2]

On the end of an iron blowpipe, the fused mat of glass rods is wrapped around into a hollow cylinder. Next the open end is gently worked closed. This forms a sealed bubble of glass that can be manipulated by standard glassblowing techniques. Soft from the heat of the furnace, the glass can be given a twist so the parallel threads form a loose spiral. This piece is stored in a ‘garage’ kiln while a second bubble is formed in the same way but with the spiral running in the opposite direction. The first bubble is opened wide at one end, removed from its iron rod and placed in a cradle on the floor which holds it upright. The second bubble is carefully lowered into the open end of the first bubble. The glass artist stands above, with the second bubble inside the first and blows, inflating the inner glass until it comes in contact with the outer bubble.

Because both glass bubbles are formed with canes, they have a ribbed texture both inside and outside. When the two glass bubbles contact each other, the high-points of the ribs meet first, which is where the threads of the two bubbles cross. The valleys of the ribs are where one cane is fused to the next; these areas cross between the bubbles at the center of each diamond in the pattern. The two bubbles fuse together trapping air in the valleys. As the glass is worked and heated these regions form small, perfectly round air bubbles trapped inside the glass. You can see this for yourself by taking two or three fingers of each hand and crossing them against each other. Imagine the threads of opaque glass running down the center of each finger. The air bubbles are trapped where you can see light between your fingers.
Reticello ("fillacello") style flamework pendant,
by Adam Reetz 2015.

The distinctive diamond pattern of reticello has been successfully achieved with other glassmaking techniques. In flameworking, glass is manipulated using only a torch and handtools. The torch is fixed to a bench where the artist either stands or sits. In general, this is a more accessible technique because it does not require a glass furnace. Here, the reticello pattern is accomplished by starting with glass tubing. The crisscross pattern is ‘painted’ onto the outside of the tubing, one line at a time; with very thin rods of glass known as “stringers.” In one version, evenly spaced straight parallel lines are drawn along the length of the tube. The tube is then reheated in the flame and twisted. Next, a second set of lines are drawn twisting in the other direction, forming the diamonds. The ends of the tube are drawn down and one end can be mounted to a rod or tube of glass and further manipulated in the flame. 

In a testament to the continued popularity of reticello, a new colorful variation of the flamework technique has emerged within the past decade, among American flameworkers. [3] This has been playfully dubbed “fillacello.” After painting the fishnet pattern on tubing, and further working the glass, the individual diamonds are “filled” with various colors using stringers. The resulting effect recalls mosaics and the ancient inspirations of reticello.

[1] The iron tool used to move the 'piera' of filigrana cane in and out of the furnace is called a 'pasorale' (V), 'pastorale' (I) = pastoral, named after the staff carried by the pope. It consists of a straight rod with a U-shaped fork in the end. Thanks to Emilio Santini for his kind assistance with Muranese terminology and knowledge of hotshop technique.
[2] Private correspondence, March 2015. Here is a video of the reticello technique as executed by American glass artist Dante Maroni.
[3] My research point to the first examples of this technique emerging on the west coat of the United States around 2005-07. (Further information on its origin would be greatly appreciated).

Monday, September 2, 2019

Filigrana Glass

Mezza Filigrana footed vase, circa 1950s,
by Dino Martens (for Aureliano Toso).
Filigrana is a classical glassmaking technique developed in the sixteenth century on the Venetian island of Murano. In the broadest sense, a piece of filigrana -- let's say a vessel -- is composed of transparent glass with very fine vertical threads of color running through it. Traditionally, these threads were opaque white lattimo (milk) glass, running through a colorless high quality product known as cristallo. Because of this, the technique was originally known as “latticino,” a term still in use, but now falling out of favor and being replaced by filigrana (filigree), a name that does not imply any particular color. 

Over the centuries, this and closely related techniques became a kind of trademark for the Murano glass industry. Parallel threads in a loose spiral winding around a vessel from top to bottom form what is perhaps the most basic application of the method. This is known as mezza filigrana (half filigree). The reason for the “half” becomes apparent when we consider its far more famous cousin reticello. With this technique, two sets of threads are used winding in opposite directions to form a fishnet pattern of  diamonds. The name recalls reticella, a traditional Venetian lace. When the work is done properly, tiny air bubbles are trapped inside the glass, one in the center of each diamond of the fishnet pattern.

Even more exotic variations have been developed, which we will discuss another time. First, let's explore how the glass artisan is able to achieve these fine threads in the glass, so perfectly spaced. I should hasten to say that I am not a glassblower and this description is not an instructional, but simply a window into some of the fabulous artistry that takes place in a glass shop. These techniques take hundreds or thousands of hours of practice to master. Even a shallow understanding of the steps that go into a piece of filigrana lead to a far richer appreciation than simply being able to identify it by name.

 “Cane” is a general term for long straight rods of glass. They have many uses in glass artistry and the method by which they are made can be surprising the first time you see it done. It is the same method as was practiced a thousand years ago. A gob of molten glass is removed from the furnace on the end of an iron rod. A second rod is attached by another artisan, with the lump of molten glass between the two rods. They start to pull in opposite directions, slowly at first. They swing and manipulate the hot glass as it cools, forming a mass of relatively uniform diameter. They continue to walk away from each other, the glass pulling thinner as they go. Practiced artisans can end up with a uniform pencil thin straight rod of glass that extends for many meters. It is laid on spaced wooden slats on the floor, allowed to cool and then snapped at regular intervals to form smaller rods.

In the case of filigrana cane, the artisan starts with a smaller gob of opaque glass; let us say lattimo (white). This gob is then dipped into clear glass, which encases it in a heavy transparent layer. When the cane is pulled, the result is a clear rod with a filament of opaque white glass running down the center. Short lengths of cane are laid side by side in a pan. The pan is heated so that adjacent rods start to fuse together into a mat. The glass artist will again take a gather of glass from the furnace around the end of an iron blowpipe and flatten it into a disk, leaving the blowhole unobstructed. The disk, known as a "collar"[2] is touched to the mat of canes at one end and rolled so that the canes wrap around and form a cylinder. The open end of the cylinder is then closed down, in effect forming a bubble on the end of the pipe. The glassblower can then treat this as if it were a bubble formed straight out of the furnace, but of course, this bubble has the threads of lattimo glass running through it. The bubble is then manipulated into a finished piece. [2]

Miniature flameworked vessels (aprox. 3cm tall)
in the style of filigrana, by Emilio Santini. 
Outside of the hot shop, there are methods that use only a torch to duplicate the appearance of filigrana and reticello on a smaller scale. This involves starting with glass tubing and "painting" the threads on using thin "stringers" of glass. It is a completely different technique which requires an entirely different set of skills. In the right hands, the results can be strikingly similar. Now that we have the basics down, we can discuss the more spectacular variations that have been developed, which we will talk about next time.

[1] "Colletto"(Italian) "Coeto" (Venetian), means narrow neck or little neck.
[2] The following Youtube video shows American glass artist William Gudenrath, assisted by Harry Siemens pulling filigrana cane and executing a reticello vase at the Corning Museum of Glass.