Dear Readers,

As you may have seen elsewhere, in mid February my wife and I suffered the loss of our home in a fire, in the hills of central Massachusetts. The good news is that we got out safely and had no animals in our care at the time. The fire crews were able to contain the fire from spreading, in what turned into a 3-alarm, 5-hour-long ordeal in subzero temperatures; they did amazing work, and no one was injured. The bad news is that all of my physical historical materials and research of 30 years have gone up in smoke. As a result I have decided to suspend this blog for the time being. It will remain online as a resource for those interested in the history of glass and glassmaking in the seventeenth century and beyond. I do intend to resume writing when I can, but for now my time and energy are required in getting us back on our feet.

Friends are providing temporary shelter for us nearby and our intention is to rebuild as soon as possible. To those who have reached out with a steady hand, to those who have opened their wallets, and offered advice in our time of need, we thank you from the bottom of our hearts. In what are already difficult times for all of us, you have made a huge difference in our lives.

Paul Engle
6 March, 2021

Monday, July 31, 2017

Alberico Barbini

The island of Murano , circa 1600
attributed to Danckerts
In the early seventeenth century, Antonio Neri began preparing batches of glass for the royal family in Florence, Italy. This was a specialist vocation undertaken by alchemists, which by schooling, Neri was. His job as “conciatore” involved procuring the ingredients, preparing, mixing and melting them and working with the glass artisans, adjusting the consistency and colors for the work being done. It was a position that carried great prestige, and Neri’s book on glassmaking [1] would cement his name in history. 

Shortly before Neri was born, in 1576, the grand duke of Tuscany, Cosimo I de’ Medici, brokered a special deal with the doge of Venice to have master glass artisans come to Florence and teach their secrets. These men were from the island of Murano; the most famous center of glassmaking anywhere. There is only scant evidence that Neri himself traveled to Venice and perhaps only once, but there is no doubt that he benefited greatly from the knowledge of Muranese workers in Florence, Pisa and Antwerp during his lifetime. 

Over the intervening centuries, the title of the glass batcher changed, but the tradition and prestige of glass formulation continued well into the middle of the twentieth century. In fact, even today, among the small glass manufacturers that compose the studio glass movement, the glass batcher is considered to be something of a modern alchemist; keeper of the arcane knowledge of  the chemicals and amounts necessary to produce special colors and adjust properties of the glass.

Now, fast forward four centuries from Neri's Italy; in the early 1920s, a Milanese lawyer named Paolo Venini partnered with a Venetian-born antique dealer friend, Giacomo Cappellin, to start a new glass factory on Murano. [2] Even as recently as this, the glass batcher still held a respected position both within the factory and the community. Through several incarnations over the next half century Venini grew a world-wide reputation for innovative designs, of which color played an important part. They are specifically associated with the fazzoletto (handkerchief) style vase and the incalmo technique of fusing two or more colors of glass seamlessly in a single furnace-blown piece. 

In 1925, Cappellin split from Venini and took many of the craftsmen with him, in 1933 the new business was acquired by Pauly & C. Again, chemical knowledge and the artistry of reproducing ancient colors made a worldwide reputation. [3] As ownerships changed hands like cards in a game of poker, artisans shuffled between factories. It is easy to lose track of the individual glassworker. Even for a period so recent, many records exist only in the heads of the family members still living on the island. 

In 1956 the Stazione Sperimentale del Vetro (Experimental Station for Glass) was started on Murano with the mandate to preserve and promote the technical aspects of Italy’s glassmaking heritage. [4] The new institution was regarded by some traditionalists with great suspicion, but as we will see, others embraced the resource.

I recently sat down with renowned glass artist Emilio Santini, who today carries on a six-centuries-old family tradition in glasswork. [5] Emilio had recently called home, to Murano, which led to his father’s recollection of an uncle, who worked making color for Venini and Pauly. Here Emilio recounts the conversation:
Alberico Barbini was the uncle of my father, Mario Santini and the man in charge of making the glass batch “partie” (Venetian) “partite” (Italian). He was the brother of my grandmother, Delfina Barbini. He was not the only one [in my family] who worked for Venini in the early days but the most respected. At Venini he worked formulating glass after another great batch maker, [Albino] Carrara. 
In the early to mid [twentieth] century the batch maker still held an important position in the factory, not like now, you know, and he kept his formulations quite secret, although this relative of mine, Alberico, was smart enough to use the most modern technology available at that time. 
He was different from other batch makers in that when the Stazione Sperimentale del Vetro opened, he made extensive use of it in reproducing colors. At that time, and even now to an extent, the institution was not seen as good for traditional Murano glassmaking. 
He later moved on to Pauly where he was in charge of reproducing the glass colors that were in use in the seventeenth, eighteenth and nineteenth centuries. First, he assisted in remaking broken or missing pieces in private collections, then later in making reproduction antique stemware at Pauly that was impossible to distinguish from the originals. 
You must realize that all this does not come from documents but from the memory, still very sharp and lucid, of my father.
Addendum: On 7 August 2016, at the age of 96, Mario Santini died, surrounded by his family at his home on Murano.


[1] L’Arte Vetraria, (Neri 1612).
[2] Paolo Venini http://en.wikipedia.org/wiki/Paolo_Venini also see https://www.facebook.com/pages/Venini/198475426829887
[3] Pauly & C. Compagnia Venezia Murano http://en.wikipedia.org/wiki/Pauly_%26_C._%E2%80%93_Compagnia_Venezia_Murano
[4] Stazione Sperimentale del Vetro  http://www.spevetro.it/indexENG.htm
[5] Emilio Santini http://www.cmog.org/bio/emilio-santini
* This post first appeared here on 25 Feb 2015.

Friday, July 28, 2017

Filippo Sassetti

Goa, India 1509
Later distinguished as a renowned glassmaker and alchemist, Antonio Neri was born into a patrician household. In the Florentine baptism records, his entry was made on a Thursday, the first of March, 1576. He was born the previous evening, to Dianora Parenti and Neri Neri. His godmother is listed in the document as Ginevra Sassetti. Not a great amount is known about her; she was from a prominent family, at the time in her late fifties. However, there are indications that other members of her family interacted with the Neri's. Her nephew Filippo mentions Antonio's father favorably several times in letters, providing a fascinating glimpse into the way disease was diagnosed and treated.

When Antonio was born, his father Neri Neri was in his early thirties, and already a highly regarded physician. Baccio Valori was director of the famed Laurentian Library in Florence and steward of the Medici's simples (medicinal herbs) garden. He was friend to Neri Neri and godfather to Antonio's oldest sister Lessandra. Between 1583 and 1588, Valori received letters from a mutual friend, Filippo Sassetti, who was living in Goa and Cochin – trading settlements in India. Filippo was a native Florentine; he attended university in Pisa with Valori and they became lifelong friends. After Sassetti's father was forced to sell the family home to pay off a debt. Filippo moved to Lisbon and became a spice trader. Not suited for a desk job, he soon set sail seeking adventure in the orient. 

In a 1586 letter to his old friend Valori, Sassetti discusses an Indian remedy against the plague, with a substance called bezoar. The bezoar stone is a mass that develops and becomes trapped in the digestive systems of certain animals. It often resembles a smooth rock. Some thought ground bezoar to be a universal antidote to any poison. Sassetti was puzzled about how the grindings of bezoar could work to cure the plague. Its Aristotelian elemental properties would not be a match for correcting the imbalance of humors in the body. "This is a principle," he explains, taught to him by Neri Neri. "I have thought about it and I can not understand how it works, because the plague is of the same corruption and this is a lack of heat inherent in the humidity. And the stones, if I recall correctly, they have a cold and dry complexion, hence may not precede the restoration of heat. Messer Neri one time did me the favor of telling me." 

In another letter to Baccio Valori, Sassetti notes that he has collected rare varieties of cinnamon in his travels along the Malibar coast in India. His intention was to rediscover the species thought to be a powerful cure of disease by the ancients. He planned to send a parcel of seeds of these and other medicinal plants. "If it pleases God, in the coming year, I will send this to you, so that you may see it all, together with our Messer Neri Neri, who graces my memories." Later he writes that he is sending Baccio the discourse on cinnamon, which he has compiled, along with some plants. These, it later turned out, were water damaged in the journey. He had hoped for some help from Neri Neri on the question of whether the cinnamon he collected from the island of Zeilan [Ceylon], is the same thing as the curative cinnamon of Mantua described by the ancients. Valori was an authority on these matters in his own right. As librarian for the Medici's imposing collection of books and manuscripts, he had vast academic access. As keeper of the simples garden, he had first hand experience in horticulture and its derivative medicinal cures. 

The principles of "humorism" were passed down from celebrated physicians of the ancient world, like Galen, Hippocrates and Dioscorides. It was thought that the cure of disease was dependent on the restoration of balance between four substances in the body: blood, phlegm, black bile and yellow bile. In turn, each of these was associated with one of the Aristotelian elements: air, water, earth and fire respectively. Each was further associated with specific symptoms and characteristic traits of the patient, even their psychological outlook and physical complexion. This system formed the foundation of Western medicine and was taught and practiced well into the nineteenth century. Although, within Antonio Neri's lifetime newer experimentally based methods did start to take hold. A decade after his father's death, in a 1609 letter, Antonio boasts about his success in curing disease in Antwerp using the methods of the medical upstart Paracelsus. It is unlikely that his father would have approved.

*This post first appeared here 13 August 2014.

Wednesday, July 26, 2017

Alchemy School

Frontispiece woodcut from
 De Chemia Senioris, by Zadith ben Hamuel, 1566
A common notion holds that alchemists were eccentrics, lone practitioners working in dingy basements, cut off from the rest of the world. This was a myth already well established in glassmaker Antonio Neri's time, but far from the whole truth. In the early seventeenth century, alchemy was practiced in medicine and pharmacy, in precious metals refining and even in the preparation of artists' supplies. The glassmaker was in good company. Where Antonio Neri received his training is unknown, but there are intriguing clues. 

We turn first to Antonio's own father, Neri Neri, the royal physician to the Medici family. According to historian Giulio Negri, he received his medical degree at the prestigious Studio Fiorentino, the forerunner of today's University of Florence. At the time, it had already been in operation for two centuries, having been granted a charter in 1348 by Holy Roman Emperor Charles IV. The charter was a response to a personal appeal by Archbishop Piero Corsini. Antonio Neri's own distant relative, Ser Giovanni Neri, later became Corsini's secretary, so a family legacy of attendance is not out of the question. That our priest might attend his father's alma mater is pure speculation, but it seems foolish to doubt that he started his alchemy education at his father's knee, in his own home.

The manuscript entitled Treasure of the World that Antonio devoted to "all of alchemy" was completed in 1600, but started two years earlier. On a page near the beginning, dated 1598, the twenty-two year-old clearly identifies himself as a "priest." Church rules forbade anyone from becoming a novice before the age of sixteen, which for Neri would have been in the spring of 1592. Full ordination as a Catholic priest typically took six years, meaning in 1598 Neri only recently underwent the 'laying on of hands' ceremony by the archbishop, confirming his title. The inescapable conclusion is that Neri learned his craft while in seminary and the Church sponsored his education. 

The identity of Neri’s order is a mystery, but the few scattered pieces of the puzzle that we do have allow for some interesting speculation. The list of candidates having some connection to the priest and the means to support, if not supply an education is not long. The five names that stand out are the Dominicans, the Carmelites, the Augustinians, the Knights of Malta and the Benedictines. The Dominicans were noted for their scholarship and ran two apothecaries in Florence. The Carmelites are named in the deposition notes taken by Agnolo della Casa, which identify Neri’s confessor as such. The Augustinians counted a Francesco Neri as abbot of their San Clemente monastery who worked for Don Antonio de’ Medici at the Casino in 1619. Antonio’s aunt, Faustina, apparently entered an Augustinian convent after the death of her husband.  Also, though Neri’s confessor was a Carmelite, he also served as the parish priest of an abbey run by the Canons Regular of the Lateran—an independent Augustinian congregation. The Knights of Malta ran two churches in Florence and Neri can be connected to both.  The knights followed the rule of Augustine and enjoyed a close relationship with the Augustinians. The order traces its roots to the crusades  and has various associations with alchemy such as George Ripley. Their main presence was on Malta, though in 1565 they suffered a devastating defeat there to the Ottomans. Neri was not a knight, but he could have occupied a place in their clergy. In Florence, any resources for schooling in alchemy by the knights would have been overseen by its most prominent local official; that official was Neri’s benefactor Don Antonio de’ Medici, Grand Prior of Pisa. The Benedictines were also associated with Neri’s family and had the means to provide him with an education in alchemy. He was born in the parish district of Benedictine church, San Pier Maggiore. His father was buried in the Cistercian (reformed Benedictine) church of Cestello. His sister  committed to a Benedictine order (the Camaldolese). After his ordination, in 1601, Priest Antonio Neri lived across the street from the Vallombrosan (Benedictine) mother church, Santa Trinita.

In any case, as royal physician Neri's father was an esteemed member of the court and Antonio would have enjoyed rare access to its inner sanctum. The grand duke's own laboratory at the Galleria dei Lavori certainly would have been a familiar haunt for our alchemist-priest.

This post first appeared here in a shorter form on 2 October, 2013.

Monday, July 24, 2017

Sal Ammoniac

Alchemical symbols used to denote sal ammoniac.
Today we will examine "sal ammoniac," a common alchemical ingredient used by Antonio Neri in many of his preparations. In its pure form, it is a colorless crystalline material and is known to chemists as ammonium chloride. It does occur as a (rare) natural mineral, but it was also manufactured as early as the thirteenth century, as noted by alchemist Albertus Magnus in his De alchymia.[1] Neither he nor Neri provides a recipe for sal ammoniac, but other sources indicate that it was made by allowing urine to putrefy with common salt. French investigators documented another method used in Egypt in the eighteenth century. This scheme involved burning the dung of animals who fed on spring grasses and then sublimating the ammoniac out of the resulting soot. Sublimation occurs when a heated material goes directly from a solid to a gaseous state without ever becoming liquid. Sal ammoniac has this property; when heated it turns to a gas and upon cooling, turns back to a solid.
Sal Ammoniac,
natural formation

The usefulness of sal ammoniac in alchemy stems from the fact that when dissolved in water, which it does easily, it immediately dissociates into equal parts of ammonia and hydrochloric acid, which in turn will dissolve some metals, including tin, zinc, iron and (reluctantly) lead. Its most famous use was as an additive to the stronger acid aqua fortis (nitric acid). Together the two formed aqua regis which was strong enough to dissolve gold. At the time that Neri was working, the only known way to dissolve the most 'noble' of metals (gold) was with the 'king' of acids (aqua regis). Neri puts this knowledge to use in his recipe for ruby-red colored glass made with pure gold. His description is light on details, but he does clearly direct the reader to dissolve the precious metal in aqua regis, then gently evaporate away the acid to obtain the red pigment.

Elsewhere in Neri's glassmaking book, L'Arte Vetraria,[2] he uses sal ammoniac in the production of "alemagna blue" paint and in the tinting of natural rock crystal. 

Another of Neri's creations requiring sal ammoniac was Chalcedony glass. It had swirls of every color the glassmaker could produce. He achieved this feat by making extensive use of aqua regis to dissolve each of a long list of metals. He then gently evaporated off the acid, leaving ultrafine powdered metals, which he added as pigments to the glass melt. 
With this powder, I made a chalcedony in a glass furnace in Antwerp that was then run by a most courteous gentleman; Mr. Filippo Gridolfi. This chalcedony gave rise to work so nice and graceful, that it emulated true oriental agate, and in beauty and delightful colors by far exceeded it.
Today, chemical factories produce vast quantities of the materials used by Neri in his glassmaking exploits and in far higher purities. Having unlimited quantities of every conceivable chemical compound at our fingertips makes it difficult to appreciate the physical labor involved by seventeenth century alchemists, both in the preparation of the glass and in the production of the individual ingredients. The chalcedony glass recipe cited above must have taken workers many, many hours to produce and must have cost a small fortune. 

[1] Magnus 1958.
[2] Neri 1612.
[3] Glauber and others used the term 'sal ammoniac' to describe a related chemical (NH4)2SO4. When mixed with aqua fortis this forms a nitric-sulfuric acid solution, which does not form aqua regis, and does not dissolve gold.
* This post first appeared here on 22 August 2014.

Friday, July 21, 2017

Reports From Parnassus

Rafael - El Parnaso (Vatican, Rome, 1511)
Apollo on Parnassus, (fresco detail). 
In the spring of 1612, Italian glassmaker Antonio Neri finished writing L’Arte Vetraria, and the Holy Office of the Inquisition approved it for publication. The book of glass technical recipes passed the Church’s censors despite it containing a large number of alchemy related methods. Contrary to what we might imagine, they did not have any problems with Neri’s work; in fact, one bureaucrat commented that the book was full of useful information. Remember, this was at the same time that so-called sorcerers and witches were being tortured and executed around Europe. One big difference in this case was intent, or rather the perceived intent of Neri's writing. Another factor was his personal connections. The truth is that alchemy was something of a fad among the wealthy nobility, who used the equipment for everything from making rosewater, to distilling liquor, to quietly trying their hand at transmutation. 

To form a better sense of the public image of the chemical arts in the early seventeenth century, we can turn to the satirical critic Traiano Boccalini, who published a book of his own the same year as Neri. Ragguagli di Parnaso [Reports from Parnassus] was an immediate hit. In fact, it became so popular that he and his sharp tongue were forced to leave Rome for the comparative safety of Venice soon after its completion, and soon after that friends found him dead under suspicious circumstances. Initially, Boccalini had been on good terms with Church officials, but perhaps he had seen a bit too much of the institution's inner workingsEventually, he became bitterly disillusioned and wrote Ragguagli as a collection of fictitious news-sheets. These were patterned after the letters that circulated widely as the forerunners of modern newspapers. His reports took place in the mythical state of “Parnassus,” which struck an uncanny resemblance to contemporary Rome. Its monarch, Apollo, struck an uncanny resemblance to the pope, as the princes of Parnassus did to cardinals, bishops and curia officials. Report LXXXIX is illustrative of what were the more practical fears over alchemy, in this case, some creative wealth building among the clergy. It gives a sense of alchemy’s public persona. Apparently, in real life, there was a crackdown by the Church on chemical apparatus, under the guise of concern for public health. Our author slyly suggests, in the very last line, that it may have had more to do with putting an end to clergy lining their own pockets. 
Apollo [the pope] Prohibits the Princes from the Use of Distillers or Alembics At Home: 
In the past few months here, various ailments have emerged in this state of Parnassus, which have caused in some an extraordinary fatigue with frequent agitation: in many a tenacious fever, a faint pulse and a monstrous appetite: in others an intense stomach ache with an ardent thirst.  
The doctors cannot find a single remedy. However, the true cause of these maladies, by decree of Apollo, was revealed before a recent meeting of the grand Asclepius [Society] of prominent Greek, Latin and Arabic doctors, where it was the subject of long and erudite debate. Because neither the enemies of the grand princes nor other eminent gentlemen were spared, it was doubted whether the sickness was caused artificially by powerful poisons. Furthermore, it is clear these troubles were not only happening nearby.  
And we see several modern princes put great study in their most excellent facilities to prepare in their alembics things other than rose water. They conceal subjects dangerous and heinous with their hidden machinations of poison. This cannot be allowed to be covered up; such a scandal must be exposed with the violence of a dagger.  
His Majesty, concurring with the opinion of the congregation, yesterday morning made a public speech, to issue a strict edict, which forbids princes of any color, from ever keeping distillation or alembic operations at home or outside. However, he allowed similar exercises in the hands of experimenters and herbalists. A thing being extremely foul is the minting of counterfeit money in the night and then by day covering so treacherous a crime by running shops openly making medals for the crown. 

In this piece, Boccalini crystallizes the complex social stigma carried by alchemy. Of all the practical tasks that could be performed in this art, the most notoriety by far was derived from the concept of turning base metals into gold. In his writing Neri openly expressed his fear that true transmutation, in the hands of the masses was likely to collapse the economy. The Vatican’s concerns were more immediate: financial gluttony within the Church. Anyone with enough alchemical knowledge could produce convincing counterfeit money. Turning lead into gold was a theoretical issue; dealing with rogue counterfeiters was a real and immediate one. 

*This post first appeared here on 8 August 2014.

Wednesday, July 19, 2017

Crocus Martis

The many different alchemical symbols used to denote crocus martis.
In order to understand the seventeenth century glass recipes of Antonio Neri and for that matter, any alchemical recipes, it is first necessary to have a grasp of the chemical repertoire. The ingredients referenced by Neri were not especially exotic, but over the intervening four centuries since he wrote, the common names of materials have changed considerably. In the current lexicon, we name materials by their chemical formulas, so iron oxide names its two constituent elements, iron and oxygen. But in the seventeenth century, the periodic table of elements was a concept yet to be invented; hence "crocus Martis." Martis refers to Mars, the Roman god of war, the red planet, and the ancient alchemical name for iron. The origins of crocus are lost, but it may refer to the similar looking spice saffron, (crocus sativus) which has been highly valued since antiquity. Poetically, 'saffron of Mars' alludes to the orange-red color of rust. 

A first encounter with the technical recipes of sixteenth and seventeenth century alchemy can be confusing, frustrating and more than a little disorienting. There is no shortage of records, letters, manuscripts and recipe books that have been preserved from that period, however, the challenge lays in making sense of them in a way that relates to our current view of the world. It is understandable that alchemical materials and compounds had unfamiliar names; but even larger difficulties arise with the realization that any given name might describe several different chemicals, and in fact, there may be several different interchangeable synonyms/symbols for any given name. As it happens, there were good reasons for this state of affairs. The challenge of deciphering alchemy is not insurmountable. Taking the time to understand really opens up a window onto a strange and wonderful landscape of history. 

Antonio Neri considered himself an alchemist first and glassmaker second. His purely alchemical works are somewhat cryptic, but in the glass book he bends over backwards to be accessible to novices. Because of this crossover, his work can help us to navigate details in both areas that might otherwise go without explanation. His writings broadly divide into two categories: one intended for generally curious readers and another intended only for those familiar with the arcane coded language of alchemy. We have examples of both styles by Neri and all written within the period of about fifteen years at the beginning of the seventeenth century. As a result, we can use his works intended for a general audience to decode some of his more arcane passages elsewhere. With the glass recipes, his careful explanations lead us to gain considerable confidence in his technical abilities. In the introduction to his famous book on glassmaking, L'Arte Vetraria, he wrote, "I have described every last detail clearly and distinctly in this work, I am sure that if you do not purposely foul up, it will be impossible to fail, after having acquired experience and practice." Even in Neri's more obscure works, he earned the respect of later chemists; in 1870, in the journal Nature, George Rodwell, the first science master of Marlborough College, pronouncing him a "sensible chemist." Rodwell went on to note that Neri had used "no less than thirty-five different names, and twenty-two symbols" to denote a single material, the metal mercury. 

In still other writings, it becomes clear that Neri was deeply concerned that some alchemical operations were inappropriate for general consumption and were better kept secret among true practitioners of the art. In particular, he worried that if the transmutation of base metals into gold and silver were practiced widely, the result would be a collapse of the economy and would ultimately plunge civilization into disarray.

We will start with his glass book, where his materials and methods are detailed with special consideration for those not familiar with the art. Then perhaps we can build on that and make sense of his more esoteric material.

In L'Arte Vetraria, Neri gives four different methods to make crocus Martis. He explains: 
Crocus Martis is nothing other that a refinement and calcination of iron. A means by which its pigment, that in glass is a deep rutty red, is opened and imparted to the glass. It not only manifests itself but makes all the other metallic colors as well, which ordinarily hide and are dead in the glass, dance in resplendent apparition. Since this is the way to make the hidden metallic colors appear, I have put down four ways to make it.
The term calcination means only 'to roast' in a hot oven. It derives from the ancient practice of cooking seashells into powdered quicklime, which is a prime ingredient of cement; now called calcium oxide.  In his first method for crocus Martis, Neri mixes iron filings with sulfur and then heats the mixture in the furnace for a long period. We can guess that the result is a mix of iron oxide and iron sulfide. These are the constituents of a popular red pigment of the same name (crocus Martis) used in pottery glazes. In the second method, he takes the iron and sulfur mixture and sprinkles it with vinegar and leaves it in the sun for many days. The third method uses aqua fortis (nitric acid) for better effect. In the fourth and final method, Neri uses aqua regis, an even stronger acid. 

In all four cases the predominant result will be for the acids to chemically react with the metal to form iron oxide and sulfide, but alas, chemistry is not that simple; there will be minor concentrations of other compounds depending on the acid used, which may or may not affect the final product. We must consider that vinegar and the other acids in the seventeenth century were significantly different from those products today. They were made by different methods and contained a variety of impurities that would never be found in the current products. As Neri notes, each method produces different effects in the glass and therefore we must conclude that each, to some extent, differs in chemistry as well. Today, we know that iron forms several different oxides, each responsible for different color effects in glass. In a number of green glass recipes Neri uses crocus made with vinegar, yet in chapter 71 he uses it to diminish the green in yellow lead crystal. In chapter 124 he uses crocus made with aqua fortis for red glass. The lesson here is that the name of a material tells us only the basics, how it was made is at least as important if not more so. 

* this post first appeared in a somewhat different form on 15 August 2014.

Monday, July 17, 2017

Purpurine

Fabergé c.1900. Purpurine cherries,
nephrite leaves, gold stalk, rock crystal pot.
Peter Carl Fabergé is known the world over for producing elaborate jeweled fantasy eggs for the Russian royal family in the late nineteenth and early twentieth centuries. [1] The artisans of his firm made use of a wide variety of exotic and precious materials in the execution of their commissions and later in items made available to the general public. Among the most exotic and sought after were objects made with an opaque bright red stone-like material known as ‘purpurine’. This was a glass based concoction whose composition was kept a tightly guarded secret. In fact, it was so tightly guarded that the formula was subsequently lost. Purpurine was typically cast into blocks which were then sawed and carved using traditional lapidary and gem carving techniques. The final appearance was of an unknown exotic mineral.


Red Glass Beads, 1st cent. BCE, Tissamaharama, Sri Lanka
The origin story of purpurine begins much earlier than Fabregé, in fact, not hundreds but thousands of years earlier. “The art of making this type of glass seems to have originated in India; glass beads of a similar material have been found in the Indus Valley and were dated to the late 2nd millennium BCE.” [2] In southern Sri Lanka deep red opaque glass beads have been found dating to the first millennium BCE; these turn out to be closely related to purpurine, through a long glassmaking tradition. [3] A version of the bright red glass was made in the Egyptian- Roman era. The first century CE historian Pliny the Elder noted that in Greek it was called ‘haematinon’ or blood-red ware. [4] He implied that this specialty glass, was routinely produced in Rome and indeed archaeologists have recovered numerous examples. The glass was used in a wide range of applications from dinner plates to pieces of elaborate mosaics. Eventually, though, the method of making haematinon was forgotten and remained so for several hundred years.


A small (1cm) Medusa's head in
opaque red glass c.1st. cent. CE.

The Renaissance era had been marked by a strong motivation to recover lost knowledge of the ancient world, but many challenges were beyond the technology of the time. However, attempts were made that eventually led to success.  In the second half of the 16th century, Pope Gregory XIII instituted the Vatican mosaic studio to decorate the new Saint Peter’s Basilica, begun by Pope Julius II in 1506. As an aside, this workshop continues today, repairing and conserving the ceilings of St. Peter’s. [5] Having quickly exhausted local talent in Rome, Gregory brought in Venetian masters to teach the art. With the mandate to make the mosaics appear as if painted, the studio developed many new formulations for the glass tesserae – the individual tiles used to form mosaics. It was in this environment that the deep red purpurine [Ital: porporino] was eventually rediscovered.


C. 1st cent. BCE/CE Roman bowl (patella cup) in
red opaque glass (haematinon).

It is still an open question whether the secret was discovered in Rome or brought there. There is evidence that the fabled red glass was being produced in Venice in the eighteenth century and possibly earlier.[6] One (Swedish) source credits Vatican studio employee Alessio Matteoli, in the 1700s, when he oversaw the development of many new colors in connection with the famous mosaics studio. In the early 1800s, interest rekindled in the ancient material and by then, analytical methods were up to the task of finding their composition. German chemist, Martin Heinrich Klaproth, analyzed haematinon from the Villa Jovis, a first century palace built by Roman emperor Tiberius on the island of Capri in southern Italy. [7] He correctly found copper, but incorrectly assumed the material was glassy slag, a byproduct of the smelting process. Later, in 1844, Schubarth did further work indicating haematinon was, in fact, a true glass. [8] King Ludwig I of Bavaria intended to build a reconstruction of a Pompeian villa for educational purposes. He assigned Max Joseph von Pettenkofer to the task of rediscovering the method of manufacturing the antique “blood glass,” and the young chemist reported success in 1853. [9] His process fused standard alkali-lead glass with copper oxide and magnetite in the presence of small amounts of magnesium oxide and carbon, followed by very slow cooling of the resultant mass, which would then take on a deep red color.


Roman Mosaicist
Michelangelo Barberi, 1809.
Other sources name one of two students of the famous Roman mosaicist Michelangelo Barberi (1787–1867). Barberi had a long standing relationship with the Russian royal family and accepted Russian pupils at his studio in Rome, he even set up a mosaic shop in St. Petersburg at the request of Tsar Nicholas I. [10] In 1846, these two pupils of Barberi, brothers Giustiniano and Leopold Bonafede were called to St. Petersburg by the tsar to work for the royal court. Giustiniano (1825-66) had served as head chemist at the Vatican studio and both would attain that post for the tsar at the Russian Imperial Glassworks. It is Leopold (1833-78) who is now most often credited with the invention of purpurine as a recreation of the fabled haematinon. His formulation was based on a standard potash lead crystal.


Purpurine taza made at the Russian
Imperial Glassworks, c.1867.
(Shown at Paris Exposition)
The first documented uses in objects of art were five entries of the Imperial Glassworks at the Paris Exposition Universelle in 1867, for which the glassworks was awarded gold medal status. [11] “After Bonafede's death in 1878, purpurine continued to be made at the factory under the direction of the chief chemist, S. P. Petuchov.” [12]

In 1882, after considerable training and apprentice work, which began when he was a teenager, a 46-year-old Peter Carl Fabergé fully assumed control of his father’s small jewelry shop in St. Petersburg. Within a short time, he was supplying the royal family with his exquisite eggs and many other items made by a growing assemblage of master craftsmen. The first use of purpurine by the Fabergé shop occurs early in Carl’s tenure, perhaps as early as 1880. Initially, they use material supplied by Petuchov at the Imperial Glassworks. Over a period of years, though, the Fabergé shop developed its own recipe based on soda lead glass, more similar in composition to the ancient samples of haematinon.[13]  Other isolated examples of purpurine are known to exist made by competitive jewelers of the time, but no documented recipe has been found. [14] Apparently, Petuchov took the Imperial Glassworks formula for purpurine to his grave. As fame grew for Fabergé, their version is the one that became familiar to a growing clientele in Great Britain and in the United States. When the February Revolution of 1917 brought an end to the Romanov dynasty in Russia, Carl Fabergé fled the country, his company disbanded. In the west, the Fabergé name only multiplied in prestige among the elite and wealthy and items made with purpurine continue to command stratospheric prices.

Significant analytical work has been done on the ancient haematinon as well as purpurines of the Imperial Glassworks and of Fabergé. [3,5] The technical differences could easily be the subject of a separate treatment; suffice it to say that knowing the composition of a glass is not the same as knowing the recipe. (Just as knowing the composition of a cake does not mean that one can bake it.) The exact method for making the glass must have involved a long period in which snowflake-like crystals of cuprous oxide (Cu2O) would be encouraged to form, grow and spread throughout the glass forming a tightly interlocking network in the glass. One interesting point is that unlike many other opaque glasses, the ingredients of purpurine do not include a discrete opacifier; it is a clear glass base, which is so loaded with deep red cuprous oxide crystals that light does not pass through even small or thin pieces of the material. Another point is that this glass was not suitable for blowing on a blowpipe and therefore did not take forms typically expected for glass. Perhaps because of this, it has been largely overlooked.

The history of purpurine is a reminder of the fragility of human knowledge; it was discovered in ancient times, lost, rediscovered and lost again in modern times.


[1] Peter Carl Fabergé =Карл Густавович Фаберже. For more, see Abraham Kenneth Snowman, The Art of Carl Fabergé, Faber & Faber, 1974.(original ed 1953). Also see
 https://en.wikipedia.org/wiki/Peter_Carl_Faberg%C3%A9
[2] Gowlett, J.A.J.: High Definition Archaeology: Threads Through the Past, Routledge, 1997, pp. 276–277. Quoted in https://en.wikipedia.org/wiki/Purpurin_(glass)
[3] Rösch, Cordelia; Hock, Rainer; Schüssler, Ulrich; Yule, Paul; Hannibal, Anne. “Electron Microprobe Analysis and X-ray Diffraction Methods in Archaeometry: Investigations on Pre-Islamic Beads from the Sultanate of Oman” in: European Journal of Mineralogy, 9 (1997), 763–783. (Specifically, beads found at Tissamaharama, pp. 771,772). http://archiv.ub.uni-heidelberg.de/propylaeumdok/volltexte/2009/305
[4] Natural History, xxxvi, LXVII, 198.
[5] For more, see http://www.30giorni.it/articoli_id_10283_l3.htm
[6] RR Harding, S Hornytzkyj, A. R. Date. “The composition of an opaque red glass used by Fabergé”in the Journal of Gemmology, 1989. No.5, pp. 275-287.
[7] Klaproth M.H., Beiträge zur chemischen Kenntnis der Mineralkörper Vol. VI (1815), p. 136
[8] Schubarth. "Einige Notizen über rothes und blaues Glas." Journal für Praktische Chemie Vol. 3 (1844), pp. 300-316
[9] Pettenkofer, M. "Ueber einen antiken rothen Glasfluss (Haematinon) und über Aventurin-Glas." Abhandlungen der naturw.-techn. Commission der k. b. Akad. der Wissensch. I. Bd. München, literar.-artist. Anstalt, 1856. Also see https://en.wikipedia.org/wiki/Purpurin_(glass)
[10] Alessio Matteoli https://nononsensejewellery.wordpress.com/tag/purpurin-faberge/ , for more on Matteoli see http://www.aiellomosaics.com/about-mosaics/techniques-and-materials/roman-or-byzantineglass-or-marble-tilesmicromosaic-or-glass-enamels/ .  On Michelangelo Barberi, see Renata Battaglini Di Stasio, “Michelangelo Barberi” in Dizionario Biografico degli Italiani – v. 6 (1964)  http://www.treccani.it/enciclopedia/michelangelo-barberi_(Dizionario_Biografico)/
[11] Catalogue Special de la Section Russe a l'Exposition Universelle de Paris en 1867, p. 44, Classe 16, no.111.
[12] See http://art.thewalters.org/detail/77444/pair-of-tazzas/
[13] Op cit. RR Harding, S Hornytzkyj, A. R. Date, 1989.
[14] For more on competitive jeweler’s purpurine, see: Géza von Hapsburg: “Some of Fabergé’s Other Russian Competitors” in Fabergé, Imperial Craftsman and His World, London: Booth-Clibborn, 2000, pp. 323-325.
* This post first appeared here 8 Feb. 2016.

Friday, July 14, 2017

Francesco and Bianca

19th century romantic depiction of
Bianca Cappello, Francesco de' Medici 
(with Don Antoni as a child.)
The story of 17th century glassmaker Antonio Neri weaves together closely with that of a Medici prince also named Antonio. The prince was six months younger, living quite a different life, yet holding many of the same interests. Don Antonio de' Medici was the eldest and only surviving son of the second grand duke of Tuscany. He became both Neri's employer and his benefactor. Don Antonio's own fascination with nature's secrets ran in his blood, a fascination that preceded him by at least four generations. His father Francesco and his grandfather Cosimo, both grand dukes of Tuscany, avidly pursued the vagaries of natural secrets. Cosimo had picked up the interest of alchemy from the notebooks of his own paternal grandmother, Caterina Sforza, as preserved by his father, Giovanni dalle Bande Nere. Don Antonio would carry on the family passion working in the laboratory built by his father on the north side of Florence, called the Casino di San Marco. Shortly after the prince settled in, priest Antonio Neri came to work in the Casino laboratory and there learned the craft of glass formulation. 

Evidence suggests that Don Antonio's mother. Bianca, was also fascinated by alchemy. Although specifics are hazy, she apparently cultivated relationships with women in the city's Jewish quarter who were well steeped in the concoction of various remedies and potions. Furthermore her family was involved in the glassmaking industry in Venice, another craft with close connections to chemistry.

By the time Don Antonio dusted off the cobwebs at the Casino and restarted the laboratory there in his early twenties, he had already experienced more than his share of misfortune. At the age of eleven, his life was suddenly changed forever when he lost both parents. Among many other implications, it meant relinquishing his future as grand duke of Tuscany to his uncle Ferdinando. Cardinal Ferdinando de' Medici had been visiting his brother, Grand Duke Francesco and his wife Bianca when they both became violently ill and died within days of each other in the fall of 1587. It was no secret that the brothers had running quarrels on a variety of matters from the cardinal's allowance to the way Francesco was running Tuscany. It was also no secret that Cardinal Ferdinando strongly disapproved of his older brother's wife, Bianca Cappello. She had earlier been the duke's mistress; they married in secret shortly after Grand Duchess Giovanna died in pregnancy. 

As soon as Francesco and Bianca's deaths were made public, rumors began to fly that the cause was poison in their food and not pernicious malaria, as pronounced by Ferdinando's own two doctors, Cini and Da Barga. Related rumors claimed that Don Antonio was an illegitimate child, or adopted, or even the product of witchcraft, none of which hurt Ferdinando's case for succeeding his brother as grand duke. The narrative was that Ferdinando had made a ruthless power grab, assassinating his brother and sister-in-law; it was a narrative that spread and gained momentum over the years, fueled by careless researchers and Victorian era romanticism. In some nineteenth and twentieth century history books, it was reported as all but fact. The poisoning of Ferdinando and Bianca has been the subject of theatrical productions, novels, poetry, paintings and a musical composition. Admittedly, it does have all the elements of a great story: Marriage for love in the aristocracy, sex, murder, intrigue, politics and religion. Truth be told, given the Medici family’s actual history, the story is not all that far-fetched, but it turns out not to be true, at least as far as modern forensics technology can determine.

 Controversy erupted in 2007 when a team from the University of Florence reported that they had unearthed what they presumed to be the long-lost (but partial) remains of Grand Duchess Bianca. Testing revealed a significant level of arsenic, leading some to give assassination another look. Others pointed out that arsenic was commonly used as an embalming preservative in this period. Meanwhile, a team at the University of Pisa confirmed that there are malaria pathogens in what are not disputed to be Francesco's remains, interred at the Chapel of Princes in Florence. 

Ferdinando's two physicians, Giulio Cini and Giulio Angeli da Barga, who were on the scene in October of 1587, reported that symptoms were identical in both patients. Modern forensics pathologists agree that those symptoms are entirely consistent with pernicious malaria. Furthermore, it was recorded that a few days earlier, Francesco and Bianca had ventured into a swampy area on a walk near the estate where they met their end. In fact, Francesco had lost two younger brothers and his mother to malaria, and I can personally vouch that Tuscan mosquitoes are nasty little creatures. If not for an insect bite, Don Antonio might well have become the third grand duke. As it was, Ferdinando took the reigns of power and Antonio Neri's father was appointed to be the new grand duke's royal physician, with Cini and da Barga his assistants.

Wednesday, July 12, 2017

Decolorizing Glass

The green tint from iron contamination
is neutralized by magenta from manganese.
For Antonio Neri and his contemporary glassmakers, contaminants, especially metallic contaminants were the bane of producing a crystal clear product. Great care was taken to ensure the purity of each ingredient at each step of the glass making process. The greatest threat of all was iron. Even small amounts will impart a green tint and for Renaissance era glassmakers, nemesis iron was everywhere. It is a common impurity in quartz, the main ingredient of glass, showing up as yellow "rust stains" both in sand and stones. It turned up in the plant salts used for glass flux as a trace-element and finally it was in the tools. Iron was in the mortars and pestles, in the pots and kettles, in the frit rakes, in the ladles, the stirring rods and in the blowpipes. A mistake at any step could easily tint the batch, even at the final stages. Neri admonishes glass workers:
Make sure never to return the neck, where the rod attaches to the glass, into the crucible of cristallo, because there are always remains of the iron that will cause it to become dark ... 
Centuries before Neri, it was discovered that the antidote to iron contaminated glass was manganese or more specifically manganese oxide, a mineral mined throughout Italy. However, Neri cautions: 
… you must always use manganese of Piedmont the way it is made for Murano, because the manganese of Tuscany and Liguria has more rust, which always make the melt dark. 
This color correction technique was known as early as the late 14th century and by Neri’s time it was a widely practiced technique in the glassmaker’s toolbox. Manganese oxide was known as a pigment in antiquity; the Magnesia region in Thessaly, central Greece was an ancient source for the black mineral. Around the year 1450, a clear crystal-like glass suitable for working into thin elaborate forms was developed in Venice. The glass was called cristallo and Murano glassmaker Angelo Barovier is often given credit. He may well be responsible for bringing together several existing techniques—manganese color correction among them — but these techniques individually were all available and utilized by glassmakers at least fifty years earlier. Barovier’s innovation would become a tradition giving Murano the reputation for the finest glass made anywhere, carried on by countless glassmakers and ultimately by our Florentine priest more than a century and a half later.

Removing the green tint of iron contamination with manganese is a clever trick. The manganese imparts a magenta tint to glass. As the complementary color to green, it effectively "cancels out" the green tint. The trade-off is that the glass is slightly darkened, even if appearing as a neutral color to the eye. When light passes through glass tinted by iron, green light is unaffected, which is why it appears green. The other colors that make up white light, notably red and violet are dampened. In effect, the green is enhanced. Now, adding manganese to the glass dampens only green light and brings the spectrum back into closer balance. The overall effect is that all the colors of light are slightly dampened, but by the same amount. In Neri's case, minor contamination from iron would produce only a small green tinge and the problem was corrected with a small dose of manganese. The resulting grey would hardly be noticed, especially in the thin, delicate pieces so popular at the time. To the eye of all but the most experienced expert, this decolorized glass had perfect crystal clarity.

Decolorization of glass is an example of a technique that was developed through experimentation without a deep understanding of the physics involved. Theories of light and color and the way they are perceived by the human eye came much later. In fact, manganese itself was not isolated as a metal until 1774, yet it was used skillfully by glass artisans three or four hundred years earlier. 

This post first appeared here in a slightly shorter form as 'Manganese of Piedmont' on 14 October 2013.

Monday, July 10, 2017

Don Giovanni in Flanders

Spanish attack on a Flemish village,
Attr:  Pieter Snayers. (click to enlarge)
In the winter of 1603-04, Glassmaker Antonio Neri embarked on what would become a seven-year-long visit to Antwerp, possibly the most productive period of his career. He was to stay with his Portuguese friend, Emmanuel Ximenes, one of the richest men in that city. But Neri was not the only Florentine courtier in Antwerp; Don Giovanni de' Medici, Florence's top military commander was already there, prosecuting a war. He was uncle and friend to Neri's sponsor Don Antonio, as well as an alchemist in his own right. There is no known record of a meeting, but it is not hard to imagine Giovanni as a dinner guest at the Ximenes household.


Neri had moved from the safety of the Tuscan hills into the very center of a bloody war for Dutch independence. The Dutch wanted freedom from Spain, which was allied with the Holy Roman Empire through a single ruling family: the Habsburgs. Within the previous thirty years, Antwerp had been burned and pillaged by Spanish soldiers that had gone unpaid by their employer. The carnage cemented a regional rebellion that would last for most of a century. The so-called "Low Countries" were divided by religious lines into the Protestant "North", and the Catholic "South". The northern territory, known as the Dutch Republic, had seceded from Hapsburg rule in 1581. As Neri started his journey in late 1603, the southern territory, Flanders, was caught in the middle between warring factions. The North had become a haven for protestant Calvinists and Lutherans who streamed in from surrounding countries. In the South, Catholic Antwerp was near the center of the conflict. The city was blocked from sea-trade by their Dutch neighbors. Armed confrontations with imperial Habsburg forces demolished surrounding towns; fighting threatened to spill into the city that Neri would call home for the better part of a decade.

The troops on both sides of this conflict were not monolithic armies, but patchworks of borrowed forces and paid mercenaries. On the imperial side, an early attempt to break the blockade had been under the command of Don Giovanni de' Medici on behalf of his half-brother, Tuscan Grand Duke Ferdinando. Florence owed its allegiance to the Habsburgs. Don Giovanni was anxious to secure Catholic Flanders for Spain and secure a military success for himself. However, in truth, the situation was more nuanced. The Medici were privately sympathetic to the Dutch cause. They were friendly with the French Bourbons as well as the English who were both secretly financing the Dutch resistance, neither of whom wanted to see a strong imperial presence in the Low Lands. Flemish Catholics themselves lost no love for their Spanish overlords, who had already destroyed Antwerp once. Furthermore, trade and commerce continued between the North and South even if sometimes rather covertly. In 1604, Don Giovanni was back to help prosecute the siege of Ostend, under Don Ambrogio Spinola. This was a conflict so bloody that it ultimately leveled that city and took the lives of thirty-five thousand men. Ostend was the last remaining stronghold of the Dutch on the North Sea coast between Sluys and Nieuport. It was only sixty miles (95km) west of Antwerp.

As bloody as it was, war in the seventeenth century followed the seasons. In the winter, Don Giovanni found time to submit a design for the Chapel of Princes in Florence. He also had Flemish marble cut for the project, and shipped back to Tuscany using, yes, Dutch traders in Amsterdam. During the lull in fighting, at the behest of Grand Duke Ferdinando he commissioned paintings of famous contemporary battle scenes by Flemish masters, which were also shipped back to Florence on Dutch ships. One set of seventeen pictures, fully paid for by the Ximenes family, was destined to hang in the new Medici villa 'La Ferdinanda' at Artemino in Prato. The interior decoration of the public spaces in this villa were being executed by artists Passignano and Poccetti, fresh from their recently completed collaborative masterpieces; the Neri Chapel and Cestello church on Borgo Pinti, financed by Antonio Neri's father. After some delay, the paintings finally shipped to the Tuscan port of Livorno, in April of 1604, just as Antonio Neri was settling into his new quarters on the most fashionable street in all of Antwerp; the Meir.

By June of 1605, fighting was on Antwerp’s doorstep, Don Giovanni de' Medici was dispatched to London. He saw the King (James I) several times, but the reception was somewhat less enthusiastic than he had hoped (at least according to reports sent home by the Venetian ambassador). Three weeks later Giovanni left for Paris with the promise of a British royal ship to bring him across from Dover to Calais. Finding no such escort, he commissioned a Dutch captain for the voyage.  

Don Giovanni's behavior, at first blush, seems quite odd; perhaps even treasonous. Commanding troops under the Spanish flag, he left the front lines at Antwerp. Using enemy (Dutch) transportation, he traveled first to the English and then the French royal court, both powers recently at war with Spain and both sympathetic to the Dutch. However, Giovanni was in constant contact with Grand Duke Ferdinando and undoubtedly acted on direct instructions. While technically subjects of the Spanish crown, the Tuscan duchy had close economic and strategic ties with all the countries involved and had every reason to pursue a diplomatic solution that would avoid another bloodbath in Antwerp. A few years earlier, Giovanni had successfully stalled the Spanish infantry from a potentially devastating invasion of France and had military experience in the Low Countries that spanned two decades. Historically, Giovanni's part in any diplomatic negotiations has not been established, but within two years, a temporary truce was reached that would eventually result in Dutch independence. In April of 1607, a temporary eight month ceasefire was negotiated, which was later extended to cover conflicts at sea. For all intents and purposes, the war was winding down.

Friday, July 7, 2017

An Art of Fire

Add captionAntonio Neri, MS Fergusin 67, 1598-1600,
ink and water color.
In L'Arte Vetraria, Antonio Neri describes glass as "a fruit of the art of fire." He apparently liked this evocative phrase enough that he borrowed the words from an earlier volume written in the first half of the sixteenth century by Vannoccio Biringuccio. Biringuccio's De la Pirotechnia was a sort of bible for metal workers, refiners and miners. The author was in charge of an iron mine near Siena and in the late 1520's he became something of a local hero for casting cannons to help Florence defend itself in the great siege.

Neri’s opening line reads:
“Without a doubt, glass is a true fruit of the art of fire, as it can so closely resemble all kinds of rocks and minerals, yet it is a compound, and made by art.”
And here is Biringuccio, half a century earlier in 1540:
“… it [glass] is one of the effects and real fruits of the art of fire, because every product found in the interior of the earth is either stone, metal, or one of the semi-minerals.  Glass is seen to resemble all of them, although in all respects it depends on art.”
In one sense, Neri is paying homage to his distinguished predecessor, but he is also lending a new meaning to Biringuccio's words. The mining expert's short chapter on glass is a survey and a great deal of it is spent on the debate of whether glass should be classified as a 'semi-mineral' because of its similarity to rocks and gems, or as a metal because of its molten properties in the furnace. Neri puts a different spin on the fruits of glassmaking. He is not as worried about classification as he is excited about the material's many uses. He composes a formidable list for us, one that ranges from drinking glasses, to optical lenses, to church windows, to laboratory equipment.

Neri uses Biringuccio's chapter as a format for his own introduction; they both cover much of the same ground, but with a telling difference in tone. Biringuccio is very much 'old school.' His main concerns are taxonomy of the material and the construction of the equipment. For him, the finished products of glassmaking are more ornamental curiosities. He trumpets that glass objects hold more beauty than their metal counterparts, but he warns that we should not give them too much love because they are fragile and therefore, like life itself, ephemeral. Neri, on the other hand, agrees that glass can be beautiful, but he is all about the chemistry and the innovative things that can be done with this versatile material.

The differences in emphasis between the two men nicely illustrate a shift that was taking place throughout society in general. For hundreds of years, the focus of scholars and craftsmen had been on rehabilitating ancient knowledge. Europeans very much saw themselves as recovering from the long slow decline of medieval times. To learn the secrets of a craft, one looked backward, not forward, and the farther back the better. Ancient texts were prized and coveted because they were seen to contain purer wisdom, uncorrupted by centuries in the dark. Both men discuss the ancient origins of glass, recounting that it is mentioned in the Bible and by scholars of the Roman Empire like Pliny. The difference is that Neri's gaze is turning; instead of looking back so much, his eyes are shifting to the present. Biringuccio's Pirotechnia and books like it created a platform from which Neri and his generation could then build on. 

There are many definitions possible for the beginning of modern science. One that is compelling from a broad, non-technical point of view is that modern science began when we spent less time looking backward for answers and more time learning from the world as it is.
This post first appeared here in a slightly different form on 7 October 2013.

Wednesday, July 5, 2017

Olearius on Glass

Adam Olearius
In the autumn of 1633, a trade mission heavily laden with gifts headed east from northern Germany. The great duke of Holstein was sending an ambassador to Moscow to request the czar’s permission for travel rights along the Volga River. Holstein was the northernmost tip of the Holy Roman Empire, in many ways more  closely tied to Scandinavia than to their Habsburg overlords. This expedition was part of an attempt to establish an inland silk-trade route between Europe and the Orient. Such a route would eliminate the circumnavigation of Africa, shortening the trip and reducing risk. After several years and initial high hopes, it became clear that the effort was doomed to failure. Czar Michael I of Russia was enthusiastic about the project, but at the southern end of the route, the king of Persia was not so receptive. Nevertheless, the expedition did become famous for a different reason: a written account of the adventures of the diplomats.

Upon the delegation’s return to Holstein, their secretary Adam Olearius (1599-1671) published a book that chronicled their travels. [1] As a mathematician, astronomer and general polymath, Olearius provides an uncommon perspective of the various cultures, practices and technologies encountered. Ultimately, he was appointed royal librarian and keeper of the duke’s cabinet of curiosities. The book proved so popular that more comprehensive editions soon followed, adding the contemporary accounts of another traveler, Johann Albrecht von Mandelslo. [2]

Glass is not the central theme of his adventures, yet this and related subjects are discussed in a number of different passages, giving us a unique insight into the material’s place in those societies.

In August of 1634, the group arrived in Moscow. Having been granted audience with the czar, Olearius describes the procession of the entourage and enumerates a long list of the gifts they brought. Among them was “a great looking-glass, being an ell and a quarter high and half an ell broad, in an ebony frame, with boughs and fruits carv'd thereon in silver, carried by two Muscovites.” [3] An ‘ell’ was the northern european equivalent of a cubit or about 25 inches, so the mirror measured about 12 inches wide by 30 inches tall, not enormous by current standards, but quite an achievement in the seventeenth century. Glass workers would have to blow a large cylindrical bubble, cut it open and lay it flat on a polished marble surface. To be usable, the sheet of glass would have to be made without waves or defects and it would have to be cooled slowly, over a period of many hours in order not to form cracks. Silvering the back was a whole other ordeal performed by an artisan schooled in alchemy.

Speaking of the chemical arts, gifts from the duke of Holstein to the czar of Russia also included “an ebony cabinet, garnish'd with gold, like a little apothecaries shop, with its boxes and vials of gold, enrich'd with precious stones, full of several excellent chymical extractions, carried by two Muscovites” [4]

While in Moscow, Olearius put on a demonstration of optics for some locals. “I shew’d them upon a wall of an obscure chamber, through a little hole I had made in the shutter of the window, by means of a piece of glass polish’d and cut for optics, all was done in the street, and men walking upon their heads: This wrought such an effect in them, that they could never after be otherwise persuaded than that I held a correspondence with the devil.” [5] Here he is describing a ‘camera obscura’ in which scenes from outside are projected upside-down onto the wall of a darkened room.

A couple of years later, after a return to Holstein to ratify a treaty with the czar, the delegation arrived in Persia. They were treated to a sumptuous meal by the king’s chancellor. “The walls were all set about with looking-glasses, to the number of above two hundred, of all sizes. So that when a man stood in the midst of the hall, he might see himself of all sides. We were told that in the king’s palace, in the apartment of his wives, there is also a hall done all about with looking-glasses, but far greater and much fairer than this.” [6]

“For the teaching of astronomy they have neither sphere nor globe, insomuch that they were not little astonished to see in my hands a thing which is so common in Europe. I asked them whether they had ever seen any such before. They told me they had not, but said that there was heretofore in Persia a very fair globe which they call ‘felek’, but that it was lost during the wars between them and the Turks. They haply meant that which Sapor, king of Persia, had caused to be made of glass, so large, that he could sit in the center of it, and observe the motions of the stars and must no doubt be like that of Archimedes, where of Claudian speaks in the Epigram which begins thus: Jupiter in parvo cum cerneret aehera vitro.” [7]

Olearius goes on to describe the Persian army in some detail, including this account of an early form of chemical warfare. “At the siege of Iran, in the year 1633, they had the invention of casting into the place with their arrows, small glasses full of poison, which so infected the air that the garrison was extremely incommodated thereby and made incapable of handling their arms for the defense of the place.” [8]

In 1637, near Tehran, Iran, he describes a royal tomb “adorn’d all about with glass of all sorts of colors, which are preserved by iron grates.” [9] And in the same area,

“At Kimas, in the province of Kilan, there was one of these mountebanks, who having found out the trick of setting cotton on fire by means of a crystal cut in half-round and held in the sun like a burning-glass, would have people persuaded that by operation, which he affirmed to be supernatural, that he was of the kindred of Mohammed. After our return to Holstein, I shew’d the Persians, whom Schach-Sefi [king of Persia] sent thither, that it was the easiest thing in the world to get fire from the sun, and I lighted paper in the very depth of winter by means of a crystal full of cold water, or a piece of ice, which I had made half round in a pewter dish. They were astonish’d at it, and said, that if I had done as much in Persia, I should have pass’d there for either a great saint, or a sorcerer.” [10]

As an addendum, in later editions of Olearius’ book, the recollections of Johan Albrecht de Mandelslo (1616–1644) were added. He accompanied an unrelated trade mission to Isfahan,Persia, and then split from his group to continue touring the region. He traveled through India, and then down the African coast. In 1639, the German traveler passed through Madagascar. He commented on the inferior quality of European glass trade-beads, compared to those of India, which he acquired earlier in the trip.

“The glass-bracelets, beads and agates, we had brought from the Indies [India] were incomparably beyond what they were laden with out of Europe; so that it was resolved ours should not be produced, till the others were sold. By this means, we bought every day four oxen for forty pair of glass bracelets, which the inhabitants call ‘rangus’; a sheep for two, and a calf for three ‘rangus’; and for a brass ring, ten or twelve inches about, a man might have an ox worth here six or seven pound.” [11]

Much has been made of the use of glass trade-beads by Europeans around the world.
In Madagascar and along the trade routes of the Indian Ocean, European traders were fairly late to the party. For a thousand years earlier, [12] beads had been used as the currency of choice among disparate cultures from Indonesia and China to India to Africa who did business with each other.[13] The above quote from Mandelslo’s diary provides a fascinating firsthand account of transactions with beads. The passage also hints at the superior quality of Indian glass beads. Today, glass beadmaking continues on an industrial scale there, and the glass bracelet industry still survives, notably in Firozabad, northern India.

[1] Adam Olearius: Beschreibung der muscowitischen und persischen Reise, (Schleswig: 1647).
[2] Adam Olearius, John Davies, Johann Albrecht von Mandelslo, Philipp Crusius, Otto Brüggemann: The Voyages and Travells of the Ambassadors Sent by Frederick Duke of Holstein, to the Great Duke of Muscovy, and the King of Persia... (London: John Starkey, and Thomas Basset, 1669).
[3] Ibid, p. 11.
[4] Ibid.
[5] Ibid, p. 58.
[6] Ibid, p. 212-213.
[7] Ibid, p.252. Jupiter in parvo quum cerneret æthera vitro [When Jove a heav’n of small glass did behold,] see Henry Vaughan: Silex scintillan, Hermetical physick, Thalia redivava, Translations, Pious thoughts and ejaculations. (Oxford: Clarendon Press, 1914) v. 2, p.635.
[8] Ibid, p. 271.
[9] Ibid, p 182.
[10] Ibid, p. 280-281.
[11] Ibid, p.204.
[12] For example warring states beads in China, see https://en.wikipedia.org/wiki/Ancient_Chinese_glass
[13] Carla Klehm has a nice post on the subject of trade beads used around the Indian Ocean; see “Trade Tales and Tiny Trails: Glass Beads in the Kalahari Desert” in The Appendix, Jan. 2014, v. 2, n. 1. http://theappendix.net/issues/2014/1/trade-tales-and-tiny-trails-glass-beads-in-the-kalahari-desert