Dear Readers,

As you may have seen elsewhere, in mid February my wife and I suffered the loss of our home in a fire, in the hills of central Massachusetts. The good news is that we got out safely and had no animals in our care at the time. The fire crews were able to contain the fire from spreading, in what turned into a 3-alarm, 5-hour-long ordeal in subzero temperatures; they did amazing work, and no one was injured. The bad news is that all of my physical historical materials and research of 30 years have gone up in smoke. As a result I have decided to suspend this blog for the time being. It will remain online as a resource for those interested in the history of glass and glassmaking in the seventeenth century and beyond. I do intend to resume writing when I can, but for now my time and energy are required in getting us back on our feet.

Friends are providing temporary shelter for us nearby and our intention is to rebuild as soon as possible. To those who have reached out with a steady hand, to those who have opened their wallets, and offered advice in our time of need, we thank you from the bottom of our hearts. In what are already difficult times for all of us, you have made a huge difference in our lives.

Paul Engle
6 March, 2021

Monday, December 30, 2019

Chalcedony Glass

17th century ribbed bottle,Brescia, Italy.
Without a doubt, Antonio Neri's most colorful creation is his chalcedony glass.[1] Through his clever technique, the 17th century glassmaker and alchemist managed to throw every color he knew into one glass pot and come up with, not mud, but the opposite—a swirly rainbow glass that defies verbal description. Somehow, he achieves a balance that blends a full range of colors in a way that seems natural and harmonious. While many glass creations survive from the seventeenth century, none is directly attributable to Neri's glass formulation. But, in my opinion, this piece from Brescia comes close to our alchemist's own description. 

Chalcedony is one of the more exotic varieties of glass described in Antonio Neri's book, L'Arte Vetraria. It is also one of the most labor intensive, exacting recipes and consequently a 'high stakes' risk for losing the entire batch after considerable work. Nevertheless, Neri assures us that the end result is worth the trouble; he describes it as:
Adorned with so many graceful and beautiful areas of undulations and enhanced with the play of diverse, lively, flaming colors.
Chalcedony is a natural mineral, known and admired since antiquity. It occurs in a variety of translucent colors and is most valued when swirls of many different colors are present together in the same piece. In the Roman Empire, it was prized for seals and signet rings; its fine-grained structure allowed intricate carving without fractures. Like many other rare natural materials, it was sometimes supposed to have mystical healing properties. 

Chemically, the mineral chalcedony is identical with quartz or silica, the main ingredient of glass. However, unlike the fabricated substance, the mineral is formed of networks of microscopic interlocking crystals that are responsible for its favorable properties. Small amounts of impurities between the crystal grains cause the swirls of color.

Neri presents three variations of chalcedony glass that span his career as a glassmaker. The first he describes as "the way that I made chalcedony in the year 1601, in Florence at the Casino, in the glass furnace there." The last was made "in the Flemish city of Antwerp, in January of the year 1611" where he presented "His Excellency, the Prince of Orange with two vessels of chalcedony [glass] which delighted him greatly."

His friend Emmanuel Ximenes was anxious to learn the secrets of this glass as early as July of 1603, when he wrote: 

The details of the last chalcedony [glass], which you promised to send to me, did not come in the letter: but I had to recant by the time I got to the end […] I see and understand, that Your Lordship is not at leisure, but in fact busy at work in the service of Christianity... 
Neri advises that in order to bring out the swirls of color, the glassblower must cool and reheat the piece several times, a process that today is known as 'striking'.

Unfortunately, there is also a dark side to this colorful creation.  It is strongly advised to avoid replication of Neri's chalcedony glass as described in his book of recipes; it contains a cocktail of extremely toxic ingredients. While these are relatively harmless once locked inside the glass, in preparation and especially in the hot molten glass melt, vapors of mercury and arsenic can be deadly. Moderate exposure can be expected to cause neurological and liver damage. (The term "mad as a hatter" comes from the unfortunate side effects of inhaled mercury vapors in the formation of felt hats.) In addition, Neri's extensive uses of strong acid reactions in these preparations make sudden eruptions and severe chemical burns a very real danger.


[1] At least in the northern hemisphere, lets say "autumn colors" in the south.
*This post first appeared here in a slightly different form on 27 September 2013.

Friday, December 27, 2019

The Blue Tower

"The Blue Tower" Jozef Linnig 1868.
There are three known facilities where priest Antonio Neri worked as an alchemist formulating glass in the early seventeenth century; in Florence, Pisa and Antwerp. If he did work elsewhere, it must have been for a relatively short period since his time at these three locations accounts well for his entire career. Of the three, he is known best for his work at the Casino di San Marco, on the north side of Florence. It is also the facility about which the most is known, since its owner was Medici prince, Don Antonio. However, a good argument can be made that the facility in Antwerp, about which much less is known, was the one most influential to his career as a glassmaker.

Neri traveled to Antwerp in early 1604 to visit his friend Emmanuel Ximenes (Pronounced Se-men-ez), where he stayed for seven years. Ximenes was an international trader (known then as a 'banker') from one of the wealthiest families in Flanders. At the time, Antwerp stood at the center of the bloody Dutch war for independence from Habsburg Spain. The population of the city was a shadow of its former self, after being sacked and burned by Spanish troops a couple of decades earlier in what has become known as "the Spanish Fury." A Dutch blockade of Antwerp's seaports had strangled commerce, but for the ultra-wealthy, life went on.  


"Antwerpen, het Arsenaal" Jan Wildens, 17th Cent.
 In his book on glassmaking, L'Arte Vetraria, [1] Neri names "the most courteous gentleman Filippo Gridolfi" as the owner of the glass factory in Antwerp. Indeed, records show that Gridolfi was the latest in a long line of who had been granted exclusive rights to make the exalted Venetian style glass known as cristallo. Previously, the facility had been run by Sara Vincx, with Gridolfi her foreman. This is the earliest documented case known to me of a glass furnace run by a woman. After their marriage, the luxury glass business thrived in Antwerp. In the 1590s, they employed seventeen Venetian workers. And later still they hosted Neri, who stayed in the area for seven years.

The most fashionable street in Antwerp was the Meir. This was the address of  Ximene's palace, as well as of his brother in law, Baron Simon Rodrigues d'Evora, who happened to be the most prestigious diamond dealer and jeweler in the region; he was known locally as "the little king." Gridolfi and Vincx had one, and later a second retail space for their glassware here. The factory and furnaces were located a few blocks away, near the fortress wall that ringed the city. Records indicate it was in a district called  the Hopland, near -- or possibly also in -- a huge structure actually built into the defensive wall around Antwerp. Called the "Blauwe Toren" [Blue Tower] for its blue slate roof, this impressive building had at various times functioned as an armory and a storage facility. In this period, a below street level canal led from the basement of the tower directly to the Meir, in later years the canal was filled in. Just on the other side of the city wall was a mote with access to the network of waterways which connected towns and villages throughout the region; this too was eventually turned into usable real estate when the wall was demolished in the nineteenth century. This situation of the glass production facility makes perfect sense. They needed to bring in heavy materials, ship delicate product and occupy a space which was not in danger of burning down the city should disaster strike. 


Blue Tower, 1860. Edmond Fierlants.
Today the foundations of the Blue Tower are preserved just below street level in a busy traffic square. Over the centuries, surrounding structures came and went. A small number of contemporary depictions do exist. Two illustrations that give a flavor of the neighborhood are shown here. One sketch by Jan Wildens  is not in the best of condition, but shows the tower and a few nearby structures from canal level in the seventeenth century. This might well have been typical of the view from a barge making deliveries. The factory would need a steady supply of pure quartz river stones used to make the exceptionally clear cristallo glass. A second view by Jozef Linnig, shows the neighborhood more clearly albeit in 1868. By then a furniture maker was located to the left of the tower, and another structure stood where the canal once was. Also of interest is an early photograph of the tower before it was demolished.

What we know of Neri's experiences in glassmaking come mostly from his book. His activities in Florence included making aquamarine colored glass for beadmaking and chalcedony glass with its multicolored swirls. In Pisa, he made emerald green, pimpernel green and celestial blue glass, he experimented with enamels, constructed a frit kiln and made glass using fern plants. From his early glassmaking activity in Florence, Neri seems to build momentum in Pisa. In these two locations combined he spends at most four years, in Antwerp he spend seven years, and there is no indication that he was slowing down, in fact quite the opposite. There he made artificial gems, a "beautiful aquamarine so nice and marvelous, that you will be astonished." He tinted rock crystal "the colors of balas, ruby, topaz, opal and girasol." He "built a furnace that held twenty glass-pots of various colors" He made ultramarine, the deep blue pigment valued by painters more highly than gold. Finally in 1609, in Antwerp, at Gridolfi's shop he made "the most beautiful chalcedony that I have ever made in my life" and presented two vessels of this glass to the prince of Orange.

[1] Neri 1612.
* This post first appeared here on 1 October 2014.

Wednesday, December 25, 2019

Gold Ruby Glass

A gold florin.
Legend claims gold ruby glass
 was discovered when a nobel threw
a gold coin into a glass maker's crucible.
Antonio Neri is best remembered for writing L'Arte Vetraria. It was the first printed book entirely devoted to the formulation of glass, which he published in Florence, Italy, in 1612. If we were to single out just one of his more than a hundred recipes, covering glass, lead crystal, paste gems and enamels, it would have to be his prescription for "Transparent Red" ruby glass made with gold. This recipe still captivates glass artists today, as it has since Neri wrote the book. In fact, gold ruby glass is closely tied to the lore of alchemy and has intrigued experimenters as well as artists and collectors since the Roman Empire, possibly before.

Alchemists had long thought gold to be the perfect metal and that all other "lesser" metals (read: lead, tin, copper, iron, mercury and silver) could be coaxed to fully "mature" into gold. Experimenters thought that if they could capture the "essence" of the king of metals, it could be used to "seed" the other metals, and transmute them into pure gold. This is where ruby glass comes into the discussion. In general, glass is colored by the addition of finely powdered metals. Depending on the metal and how it is treated, a whole rainbow of colors can be produced in glass. Alchemists were convinced that the color was an indication that this "essence" of the metal had been released into the glass. 
Cranberry glass or Gold Ruby
 treasury chamber of the Wittelsbacher , Munich Residenz.

For artists and collectors, gold ruby is simply a very attractive color; the difficulty of producing it and working with it only adds to its cachet. Transparent red in glass can be produced other ways, notably with copper, but copper red has a slightly more orange color. Gold ruby, on the other hand, has a characteristic red color that can have slight hints of purple. It can be made light and ethereal or dark and heavily saturated, but viewed next to its competitors, it has a very distinctive hue that experts pride themselves on recognizing.

Neri’s recipe involves moistening gold powder with "aqua regia," which we know as a mixture of nitric and hydrochloric acids. He then spreads this wet mixture on an earthenware pan and heats it in the furnace "until it becomes a red powder, which will take place after many days." Here is that color change that alchemists looked for as an indication of transformation; we know today that Neri was producing gold chloride. This is one of the very few chemical compounds that gold forms and in fact, this is one of the main things that makes gold so special: it does not rust, nor corrode or tarnish, which are, in the end, all chemical reactions between the metal and its environment.

Neri directs his readers to sprinkle, little by little, the gold chloride into the glass melt. He says to "Use fine cristallo, thrown in water many times." Cristallo is the exceptionally clear glass invented by Venetian craftsmen, and "washing" was a technique to remove excess water soluble flux and other contaminants. He finishes his instructions abruptly by saying this method "will make the transparent ruby red glass; but you must experiment in order to find it." In other recipes, Neri goes to great lengths to explain his methods in detail, here he seems content to barely scratch the surface. Much speculation has taken place over the reason for this surprisingly short recipe. Was he ordered, perhaps by his Medici overlords, to keep details to a minimum? Some have wondered if Neri even knew how to produce gold ruby; the short recipe may have been a cover for his lack of knowledge.

Doubts about Neri's gold ruby glass recipe grew after his death, when it was discovered by other experimenters that the addition of small amounts of tin into the mix produced the ruby color quickly and reliably. This compound of tin and gold chloride was called "Cassius purple" after one of its inventors and its color. In some circles it was thought that the tin was an essential ingredient, a lost secret that had been rediscovered. The argument was that gold chloride alone could not produce the color, it must be combined with tin in the form of Cassius purple. However, this is not the case. 

In an 1846 edition of the Journal of the Franklin Institute (ser. 3, v. 11), professor of chemistry and natural philosophy, E. L. Schubarth, cites numerous investigators who demolish this theory. He wrote:
It must not be imagined from this, as some persons have lately stated, that it is necessary to use gold [combined with tin] in the state of Cassius purple.
Neri, at the end of the sixteenth and commencement of the seventeenth century, stated, that in order to stain glass a ruby color, it was only necessary to employ calcined chloride of gold. At a later period, Libar wrote to the same effect, and Merret certified that he had proved the efficacy of the process. In 1834 Golfier Besseyre stated, in the Journal of Pharmacy, that Douault Wieland colored his paste with perchloride of gold only. Lastly, in 1836, Fuss writes, that in Bohemia all the ruby-colored glass was prepared with chloride of gold only, and that glass might be stained red as well with metallic gold, as with oxide of gold or Cassius purple.
It is therefore a fact known for some time, that glass may be stained red, without either Cassius purple or oxide of tin, with [only] metallic gold or preparations of gold. In the glass-works of Bohemia and Silesia perchloride of gold only is used, without the addition of oxide of tin, in order to produce their fine rose or carmine-colored glass.
Of the men cited, Douault-Wieland was a Parisian jeweler who was famous for his artificial gems and crystal glassware. He was praised for his skills by Napoleon. Paul Golfier-Besseyre was a well respected French chemist. Besides many other endeavors, he worked for the glass industry and performed numerous experiments on the formulation of glass. He produced a gold ruby using the same ingredients as Neri. He determined good color could be achieved by letting a new batch of the glass age for a protracted period of time at temperatures below the melting point of gold. Periodically, he removed the glass from the furnace and poured it into water to wash it. The result was a yellowish glass when molten, but when a gaffer finished a piece it was gently reheated and the ruby color developed. 

Monday, December 23, 2019

A Band of Alchemists

"The Alchemist" 1558, Pieter Brugle the Elder.
Mention the word 'alchemist' and the images that spring to mind are likely the same ones that have been around for centuries. Perhaps you will imagine something like Pieter Brugle’s 1558 depiction; a fool, whose head is filled with fantasies of conjuring gold. He spends all his earnings on exotic chemicals while his children go shoe-less, the cupboard goes bare and his family starves. No? Then perhaps a more classical rendition; a white bearded mystic stirring a cauldron in a deserted castle, summoning unearthly forces, bending the will of nature.    

It is true that outlandish characters like these have existed, but as a fringe element at best.  For every secluded wizard or "get rich quick" schemer there were many more alchemists who lived otherwise unremarkable lives and went to work every day. They interacted with colleagues and used their knowledge to provide valuable services like making painter's pigments or medicines or refining metals. Seventeenth century glassmaker and Catholic priest Antonio Neri fell into the latter category. Another departure from the typical caricature of alchemy is that it was very much a plural endeavor; it was practiced not primarily in isolation but by well connected networks of people, at least in late sixteenth century Florence.
Anibal and Martin
Neri's "Tesoro del Mondo" 1598-1699

Neri's father was the chief physician to the grand duke of Tuscany, and as such probably had something to do with Antonio's education and with the position that he landed in Florence at the renowned "Casino di San Marco," the laboratory of Medici prince Don Antonio, inherited from his father grand duke Francesco. Even before his prestigious appointment, Neri wrote an illustrated manuscript in which he shows a number of young men and some women his own age working at the business of alchemy. A few of them are identified by name and must have been Antonio’s friends: Anibal, Martin, Hiroem and Pietro. [1] 
Female alchemist depicted in Neri's
"Tesoro del Mondo"

The female alchemists depicted in the manuscript are not specifically identified, but a strong possibility is that they were nuns from one of the nearby convents. These facilities often maintained their own pharmacies and ran cottage industries that produced and sold goods to raise funds. Alchemy practiced by women is an area of study which still needs much research, but it is known that convents used alchemical techniques to distill their own medicinal remedies and produced their own paint pigments. The famous painter Suor Plautilla Nelli resided in the Dominican convent across the street from the Medici's Casino laboratory. Sculptor Suor Caterina Eletta was a nun at the same convent around Neri's time and was the daughter of Stefano Rosselli, the royal apothecary, another profession steeped in alchemy. Her uncle Fra Anselmo ran the Dominican's apothecary at San Marco, literally a few steps from the laboratory's front door. Suor Caterina was surrounded by relatives deeply involved in alchemy, how could she not be familiar with the subject?

At Don Antonio's laboratory, the Casino di San Marco, or the Royal Foundry as it also became known, Neri worked closely with Agnolo della Casa, another Florentine of the same age. In fact, all three men, Neri, Della Casa and Don Antonio were all born within a year of each other around 1576. Della Casa took notes on Antonio Neri's experiments in Florence over a period that spanned more than a decade. He filled literally thousands of pages. Much of this material is devoted to transmutation and the philosophers stone, both were subjects dear to Don Antonio de' Medici, their boss. The notebooks also indicate a lively correspondence with other chemical experimenters around Italy and wider Europe. Neri himself carried on a correspondence with his friend Emmanuel Ximenes who lived in Antwerp, a city that would become Antonio's home for seven years. 

The network of alchemy in Florence reached outwards to other experimenters and it also reached forward in time. Knowledge was passed from one generation to the next by schooling children in the art. From another branch of Della Casa's family came two brothers, Ottavio (1596) and Jacinto (Giacinto) Talducci della Casa (1601).  As youngsters they were said to have learned alchemy at the knee of Don Antonio. A century later, historian Giovanni Targioni-Tozzetti chronicled that these boys would go on to serve Grand Duke Ferdinando II de' Medici  and continue the work by directing the Real Fonderia when, after Don Antonio's death, it was moved from the Casino to the Boboli Gardens. Ottavio would become director of the Royal Foundry. [2]  
Jacinto Talducci Della Casa

Jacinto became a parish priest a few kilometers east of Florence, but he was pressed back into service as an alchemist after his brother died. He succeeded Ottavio as director of the Royal Foundry under Francesco Redi. Little is known about Jacinto's contributions to chemistry, but it must have been a remarkable life. He saw the germ of experimentalism really take hold; it would continue to grow and become the basis of our own modern science. Jacinto died in 1700 at the age of 99, he was the last surviving member of Don Antonio's band of alchemists and quite likely the last living soul to have personally met Antonio Neri.

[1] Neri 1598-1600, ff. 22r, 23r, 24r.
[2] Targioni-Tozzetti 1780, p. 127. Don Antonio de' Medici died in 1621.
* This post first appeared here on 26 September 2014.

Friday, December 20, 2019

Alchemy of Plants

Antonio Neri, Tesoro del Mondo, f. 9r.
"Arts Preparatio frugu vel Piantar."
In a 1598 manuscript devoted to "all of alchemy", Antonio Neri singled out four particular practices, each of which he made the subject of a detailed illustration. Each is devoted to a different "art"; preparing animals, stone/minerals, plants and metals. The manuscript was produced over a period of two years starting when he was just twenty-two years old. He began writing shortly after his ordination as priest and the work was completed before he was employed making glass for the royal Medici family in Florence. 

Neri is best known for writing the first printed book of glassmaking recipes, so we might expect to find that subject covered in the early manuscript, but nothing appears aside from a single recipe for artificial ruby which makes use of glass. Indeed, the general conclusion of historians is that his involvement in making glass did not start until 1600 or 1601. Absent of any direct citation of that art, the manuscript does show a familiarity with the kind of individual skills required. Among the things Neri would need to know was the ability to make "glass salt" from certain dried plants. Presently we will look into the third of the illustrations mentioned above, which he titled "The Art of Preparing Fruits or Plants." [1] All of the activities depicted here relate to food and drink, yet they could easily be applied toward other purposes.

While there is scant reference to glass in the text, the pictures are filled with examples of specialized vessels for chemical production and investigation. From these figures we know Neri at least received an exposure to the glassmaking profession earlier. He must have started his training in alchemy as a teenager while still studying for the priesthood. This is not hard to imagine since his father was the chief physician to the grand duke of Tuscany, and would have a strong grounding in alchemical techniques for producing medicines. Indeed, the first sentence of Antonio's 1612 book on glassmaking, L'Arte Vetraria, begins: "I have spent years of my youth laboring around the glassmaking craft, and experimented with many fine and marvelous effects." [2]

At center-left of the illustration at hand, we see a male farmer holding a flail, perhaps going about the business of threshing wheat, which appears in a bale behind him. Figuring prominently above the farmer (upper left) is a large mechanical apparatus that appears to be a gristmill powered by a waterwheel. A conical bag feeds grain or possibly corn from above into the central hole of a horizontal grinding stone supported by a large rectangular box. We can easily imagine that the gears shown on the front of the box control the drive or the gap between the stones. Wheat, of course, was an ancient well established staple. Corn was introduced as a direct result of Columbus' voyage to Cuba and by Neri's time, corn was being widely cultivated throughout southern Europe, northern Africa, and even as far as China.

Returning to the illustration, on the immediate left of the mill is a woman, who we can guess, is fashioning rolls or small loaves of bread from dough made with flour from the mill. Below her, (center right) is a boy using a long paddle to put the balls of dough into a baking oven. In effect, Neri is showing us the full chain of events from harvesting to finished baked goods. 

Further down, another woman works over a large basket of herbs, which appear destined for three large glassware stills to her right. In his book, Neri presents numerous recipes for extracting paint pigments from flowers using similar methods.

At the bottom of the illustration, a third woman stands in a large wooden tub crushing grapes with her bare feet, as grape juice runs into a pan on the right. To her left are three wine barrels standing side-by-side. 

For us, the connection to alchemy might seem tenuous with the possible exception of the distilling stations. For Neri, there was a deep lesson here about the way nature works; in his later manuscript Discorso, he uses the growth of grain as a metaphor for "multiplying" the "seeds" of gold inherent in primordial material left over from the creation of the world. 
This is confirmed by the example of seeds, of which a single grain is capable of producing a hundred or a thousand, as long as you sow them in a commensurate place. Take the further example of fermentation, in which one small part is sufficient to ferment a large mass. Nor is it contradictory to say that the metals do not produce seeds, like herbs and plants, because even though nature by itself has no power to take the seed out of gold, however, aided and encouraged by art, [nature] will do that which it does not do by itself. So that art begins where nature ends, and art will perfect the seed, which in gold is merely begun. [3] 
Given knowledge of how to work in harmony with nature and bring about the right conditions, he was convinced that a small quantity of material could be converted into a large amount of precious metal. The illustration on the art of preparing plants simply showed a different manifestation of the same principle; he is showing how grain multiplies in the fertile earth, it is then transformed through the addition of water and fire into nourishment.

[1] Neri 1598–1600, f. 9r.
[2] Neri 1612, p. ii.
[3] Grazzini 2012, p. 454, (Neri, 1613).
* This post first appeared here in a slightly different form on 10 Sept 2014.

Wednesday, December 18, 2019

The Dregs of Alchemy

"The struggle of fixed and volatile" 
allegorical illustration from
Splendor solis [detail] 16th C.
To 17th century Italian glassmaker and alchemist Antonio Neri, "Dregs" were otherwise known as terra, gruma, immondita, terrestreità and the evocative sporchezza. It was the "filth" and sediment left in the bottom of vessels after useful material was extracted from a preparation. These often foul-smelling substances were sometimes discarded:
Then filter out the dregs of the vitriol impregnated water; that which is yellowish you should throw away. –L’Arte Vetraria, chap. 38.
Other times, dregs were further refined. A notable example was the potassium rich muck left at the bottom of aged wine barrels. This was Neri's secret ingredient in producing a fine, sparkling cristallo glass. To understand the distinction between the useful and the useless forms of dregs, we must dig deeper into Neri's philosophy.

It might be surprising to some that these lowliest of materials could play an important role in the theory of transmutation—the alchemists' ultimate quest—which was to turn base metals into gold and silver. The idea was that a natural evolutionary process occurred in which  primordial material from the creation of the universe would, over time, mature through the lesser metals into pure gold. It was thought that this maturation was prompted by "seeds" of gold contained in the material. In Neri's view, this could be interrupted by various natural circumstances and could be restarted or sped-up through alchemical manipulation.

If one was to "purify" lesser metals into gold, it was advisable to know what needed to be removed. In his manuscript Discorso, Neri carefully explains five categories of impurity, which he then breaks down further into two sub-groups:
It should be noted in general, that in dealing with the [Aristotelian] elements in accordance with chemical philosophy, we can say that all mixed bodies in this art are discovered to contain five kinds of impure substances, which are completely dead and without any virtue or properties effective to [alchemical] operations. Two are from impure substances and three from pure substances, where all the strength, effectiveness and virtue are located specific to each mixture. Of the two [derived from the impure] one is called 'phlegm', which is to say a watery substance with no odor or taste and the other is called 'dead body' [corpo morto] or 'damned earth' [terra dannata], an earthy substance that is equally tasteless and without virtue.[1]
Indeed, in Neri's chemical philosophy, the above two useless forms of impurity (phlegm and corpo morto) are complemented by three useful forms (salt, oil or true sulfur and spirit or mercury), which are present in so-called pure materials. Researcher Maria Grazzini notes in her annotations to the manuscript that: "The chemical philosophy to which Neri refers is Paracelsian, which in addition to the four Aristotelian elements introduces the principal triad (tria prima) of salt, sulfur, and mercury. References to sulfur and mercury were already present in Arabic alchemy." [2] 
Of the other three [derived from the pure] one is called 'salt' and it is the so-called most fixed substance because it is resistant to the violence of fire; it does not flee or vanish into the air. The second is called 'oil' or 'true sulfur' because of the similarity to it, fatty and viscous. The third is called 'spirit' because it is more spiritual and volatile than all the others and even the slightest heat will cause it to dissipate into the air if it has not been bound to the salt, which is the component fixed by the oil. By its tenacious, slimy nature, [oil] acts to bind the volatile to the fixed. These three types are those of the pure substances, which are called by many other names; 'body', 'soul' [anima], 'spirit'; 'bitter', 'sweet', 'acid'; 'salt', 'sulfur', 'mercury' etc.
In them alone are placed all of the virtue and effectiveness of the minerals, the vegetables and the animals, even if the quantity of pure substance is very small in comparison with the impure in any kind of mixed body. These [three] are found in each mixed quantity of pure substance, in comparison with the ineffectual found in the impure. [3] 
In his view, it is these last three forms of impurity that hold the key to transmutation, which tends to puts dregs in a whole new light.


[1] Grazzini 2012, p. 339.
[2] Ibid, note 45, p. 339.
[3] Ibid, p. 340.
* This post first appeared here on 20August 2014.

Monday, December 16, 2019

Ultramarine Blue

Scrovegni  Chapel, Padua
Frescos and ultramarine ceiling, Giotto 1306.
In his fifteenth century handbook for painters, Cennino Cennini said, "Ultramarine blue is a color illustrious, beautiful and most perfect, beyond all other colors; one could not say anything about it, or do anything with it, that its quality would not still surpass." The ancient Egyptians used ultramarine to decorate the sarcophaguses of their pharos. Later, Marco Polo reported that it was made at a lapis lazuli mine in Afghanistan. Its name alludes to these far-flung origins: ultra-marine = "beyond the sea." Venetians were probably the first in Italy to learn the extraction technique and import the raw lapis. Producing the rich blue pigment from the rock was no simple task; success required an elaborate set of steps. Because of the difficulty, for a time, an ounce of ultramarine was valued more highly than an ounce of pure gold. In the legal contracts drawn up for commissioned paintings, patrons often stipulated exact amounts of the precious material for the artist to use. Beyond its beauty, its presence in a painting signaled the wealth of its owner.

In the last part of his book, L'Arte Vetraria, Antonio Neri presents his recipes for a variety of paints, including one for ultramarine. In glassmaking, drinking goblets adorned with delicate paint-work raised their value and elevated them into the realm of art. Unlike enamels, which fired into the glass, most paint, including ultramarine could not survive the furnace, requiring application only after a piece was finished. The number of different paint and lake recipes in the book indicates Neri's familiarity with the craft. This, combined with his willingness to use other painter’s materials like "smalt" in his glass formulations, hints at a still unknown chapter in the alchemist's life. Perhaps, for a period in Antwerp, he worked directly with fine artists. Here is Neri’s ultramarine:

Take fragments of lapis lazuli, which you can find plentifully in Venice and at low prices. Get fragments that are nicely tinted a pretty celestial color and remove any poorly tinted fragments. Cull the nicely colored fragments into a pot and put it amongst hot coals to calcine. When they are inflamed throw them in fresh water and repeat this twice. Then grind them on a porphyry stone most impalpably to become like sifted grain flour. 
Take equal amounts, three ounces each, of pine pitch, black tar, mastic, new wax and turpentine, add one ounce each, of linseed oil and frankincense. I put these things in a clay bowl to warm on the fire until I see them dissolve and with a stirring rod, I mix and incorporate them thoroughly. This done, I throw them into fresh water, so they will combine into one mass for my needs.  
For every pound of finely powdered lapis lazuli, ground as described above, take ten ounces of the above gum cake. In a bowl over a slow fire, melt the gum, and when it is well-liquified throw into it, little by little, the finely powdered lapis lazuli. Incorporate it thoroughly into the paste with a stirring rod.
Cast the hot incorporated material into a vessel of fresh water and, with hands bathed in linseed oil, form a round cake, proportionately round and tall. You should make one or more other of these cakes from the quantity of the material. Then soak these cakes for fifteen days in a large vessel full of fresh water, changing the water every two days. In a kettle, you should boil clear common water and put the cakes in a well-cleaned, glazed earthen basin. Pour warm water over them and then leave them until the water has cooled. 
Empty out the water and pour new warm water over them. When it has cooled, pour again, replenishing the warmth. Repeat this many times over, so that the cakes unbind from the heat of the water. Now add new warm water and you will see that the water will take on a celestial color. Decant the water into a clean glazed pan, pour new [warm] water over the cake and let it color [the water].
When it is colored, decant it and pass it through a sieve into a glazed basin. Pour warm water over the cake, repeatedly until it is no longer colored. Make sure that the water is not too hot, but only lukewarm because too much heat will cause the blue to darken, hence this warning, which is very important. 
Pass all this colored water through a sieve into the basin. It still has the unctuosity of the gum, so leave it to stand and rest for twenty-four hours; all the color will go to the bottom. Then gently decant off the water with its unctuosity, pour clear water over it and pass it through a fine sieve into a clean basin. 
Pass the fresh water through the sieve with the color stirred-up so that this color still passes through and therefore a great part of the filth and unctuosity will remain in the sieve. Wash the sieve well and with new water again pass the color through. Repeat these steps three times, which ordinarily leaves all the filth on the blue resting in the sieve. Always wash the sieve each time, cleaning it of all contamination. Put the blue in a clean pan. Gently decant off the water and then leave it to dry. You will have a most beautiful ultramarine, as I have made many times in Antwerp. 
The amount per pound of lapis lazuli will vary. It depends on whether the lapis has more or less charge of color and on the beauty of its color. Grind it exceedingly fine on the porphyry stone, as described above and you will succeed beautifully.  
For a quite beautiful and sightly biadetto blue that mimics ultramarine blue, take ordinary blue enamel and grind it exceedingly fine over the porphyry stone, as above. Incorporate it into the gum cake with the dose described above and hold it in digestion in fresh water for fifteen days as with the lapis lazuli. Follow the directions for the lapis lazuli, in all and for all, until the end. These blues are not only useful to painters, but they also serve in order to tint glasses par excellence.

Friday, December 13, 2019

Fire, Brimstone, and Glass

The Alchemical Symbol for Sulfur
Bright yellow elemental sulfur or “brimstone” as it was often called, occupied a central place in the cabinets of seventeenth century alchemists. Antonio Neri used it in many of his preparations and specifically in pigments for glass. When sulfur is heated with thin sheets or shavings of metal, foul smelling chemical reactions can take place that reduce the metal to a powdered compound and some of these turn out to be effective glass colorants. Neri’s 1612 book, L’Arte Vetraria, offers a variety of recipes, which specifically prepare iron and copper using sulfur to form pigments. In reality, the resultant chemicals were mixtures of oxides and sulfur compounds. Since these also chemically interact with each other in the glass melt, many different effects are possible. Modern glass artists sometimes specifically use both oxide and sulfide pigmented glass side by side in the same piece; a striking effect can be the spontaneous formation of a third color along the boundary. As Neri says in the closing line of his book:
Although I have placed here the way to make this powder with much clarity, do not presuppose that I have described a way to make something ordinary, but rather a true treasure of nature, and this for the delight of kind and curious spirits.[1]
Keep in mind that the thinking of alchemist Neri was that the sulfur acted upon the metal, but did not necessarily combine with it. From his point of view, the exposure resulted in the metal’s infusion with new properties. The Aristotelian conception of the world was that everything under the sun contained various amounts of four elemental essences: air, water, fire and earth. Sulfur was seen to be dominated by the latter two, ‘fire’ because it burned easily and ‘earth’ because it occurs as a solid.

In the sixteenth century, a Swiss physician named Paracelsus developed an extension of the four-element system. After his death, his writings enjoyed a new popularity among chemical experimenters in the period that Neri came of age. Since his teenage years, the work of Paracelsus was a strong influence on both Neri and separately on his benefactor, Florentine prince Don Antonio de’ Medici. According to Paracelsus, sulfur was one of a triad of “principles” consisting of salt, sulfur and mercury. These three had philosophical as well as physical interpretations attached to them. Besides other applications, like in medicine, the three physical materials figured prominently in efforts to transmute one metal into another. 

In fact, sulfur in particular played a starring role in a very convincing demonstration that purported to turn iron into copper. Mining operations often utilized water to clean or separate ore from tailings. Other times, water was used to keep dust down, or simply flowed naturally through underground springs. When sulfur-bearing earth is exposed to air and moisture, the result can be the formation of dilute sulfuric acid. This “vitriol” was an irritant to the eyes and skin, and very unpopular with the miners. However, in at least one location, it seemed to have a miraculous property. When this “vitriolated water” flowed out of the mine, it seemed to transform bits of iron into copper. [2]

Chemically, copper had already been dissolved in the acid, forming a copper sulfate solution. But sulfuric acid shows a preference for iron. When the copper solution flowed over iron tools, it took up the iron and dropped the copper, depositing it in a thin layer. The effect appeared to be a transmutation of iron into copper. Further testing and scrutiny confirmed that pure iron, when exposed to the mine fluids resulted in real copper. Neri for one was well aware that the vitriolated water might have arrived containing copper, as he explains in his manuscript Discorso. [3] But apparently, it did not occur to him that the water leaving the scene might have contained the iron. If he had made the connection, the observation would have advanced the understanding of both ion-exchange chemistry and the principal of conservation of matter; these were two ideas that would not be explored seriously for another hundred years.

Well into the eighteenth century, the mine at Smolnik, (now in Slovakia), was a highly touted tourist destination for chemical experimenters. [4] For some, it was considered among the strongest evidence that transmutation could and did take place in the natural world. I like this demonstration so much because it works the same way as a parlor trick; while we are so intently focused on the metal changing before our eyes, Mother Nature quietly slips the copper in with one hand and takes the iron away with the other, no one the wiser.


[1] Neri 1612, p.114.
[2] See this post for a more detailed description  http://www.conciatore.org/2014/01/turning-iron-into-copper.html
[3] Grazzini 2102.
[4] The effect had previously been described Georgius Agricola, in book 5 [9] of Nature Fossilium. See edition, transl. from the first Latin edition of 1546 by Mark Chance Bandy, Jean A. Bandy (New York: Mineralogical Society of America, 1955), p. 188.
*This post first appeared here on 7 November 2014.

Wednesday, December 11, 2019

Tartar Salt

So-called "wine diamonds," (harmless)
Potassium bitartrate deposits which can accumulate
in bottles and barrels of wine
Tartar salt is an example of an alchemist's chemical that is a byproduct of another process, in this case winemaking. In his book L'Arte Vetraria, [1] Antonio Neri uses it in his glassmaking for two very different effects. The first application is to improve the appearance of the glass and the other is to modify colors. In addition to uses in glass, tartar also finds its way into his recipes for red paint made from the dried kermes insect [2] and for cast bronze mirrors, as a flux. (In foundries, a flux keeps the metal bright and shiny while in a molten state). [3]

Neri notes that tartar also went by the name of "gruma" to which we can add the synonyms greppola and argol. He warns readers several times to "leave behind the [dried] powder of the [raw] tartar, which is no good" and that "you should have tartar, from the dregs of red wine, which is better than white wine." [4] Nevertheless, he does specifically use white wine tartar in his recipes for rosichiero, a transparent dark red enamel. [5] In his recipe for producing tartar salt [6] he directs the reader to obtain the raw material from emptied wine barrels, but elsewhere in the book he seems to prefer to use the large crystals of tartar that have “vitrified naturally in bottles of wine.” [7] Chemically, tartar is a potassium compound formed through a reaction with tartaric acid, a major constituent of grape juice. [8] 

The effect of tartar in improving the appearance of glass can be readily explained. Most of the glass that was made in Italy in the seventeenth century used sodium-based additives to lower the melting temperature of finely ground quartz powder; these formulations are known as soda-based glasses. Using potassium compounds can have the same effect and these 'potash' based glasses were predominantly produced in northern Europe where trees and plants rich in potassium were used in glass. Potassium is a heavier element and it produces a denser, more refractive glass, giving it more sparkle, although not as much as lead imparts to crystal. Unfortunately, potassium also makes the glass harder to work for the artisan. Potash glass stiffens more quickly as it cools, whereas soda glass remains workable for a longer time before requiring reheating in the furnace. Many of Neri's recipes blend the two additives, which we can imagine gives some of the advantages of both.

Neri also used tartar to modify color in glass. The effects of tartar are exemplified in a number of passages throughout the book. He uses it as the sole pigment in his recipe for pearl colored glass, but he warns, "Once obtained, you must work the color quickly, because it will dissipate." [9] Conversely, he also uses tartar to produce a black colored enamel, combining it with manganese [oxide], which by itself imparts a magenta color. [10] 

The first step in making Neri's purified tartar salt is to obtain the raw "gruma, from barrels of red wine in which it forms large lumps." Next, he gently roasts it in terracotta pots "until it becomes calcined black and all its sliminess is roasted away. It then will begin to whiten, but do not let it become white, because if you do the salt will be no good." Now, he boils it in water for two hours, evaporating off three-quarters of the liquid. After filtering, he lets the remaining liquid "lye" cool in pans, allowing any sediment to settle to the bottom. He gently pours off  (decants)  the liquid which is further processed on the stove, this time in glass containers. The result, after full evaporation over a slow fire is a “white salt” left in the vessel. He dissolves this in hot water, filters it again and allows more sediment to settle out for a period of two days. Again, the liquid is decanted and evaporated in a glass container. The filtering and evaporation process is repeated four times, resulting in a product that is "whiter than snow."

Neri's final remarks for this chapter are as follows:
“When mixed with sifted polverino, or rocchetta, with its doses of tarso or sand, this salt will make a frit that in crucibles will produce the most beautiful cristallino and common glass, which one cannot make without the accompaniment of tartar salt. Without it, good fine cristallino can be made, nevertheless with it, it will be the absolute most beautiful.” [11]

[1] Neri 1612.
[2] Ibid, ch 116, 117.
[3] Ibid, ch 113. Note that in glassmaking, the term 'flux' has a different meaning than in metallurgy.
[4] Ibid,  ch 41. 
[5] Ibid, ch 125.
[6] Ibid, ch 11.
[7] Ibid. ch 46.
[8] Pure tartar takes the form potassium bitartrate KHC4H4O6.
[9] Neri 1612, ch 60.
[10] Ibid, ch 102.
[11] Ibid, ch 11. Polverino and rocchetta are thought to be forms of dried Salsola Kali plants. Tarso is Neri's term for white quartz river stones. Cristallino was a Venetian style glass that in quality fell between common glass and the premium cristallo, for which Murano became famous.
* This post first appeared here on 5 Sept. 2014.

Monday, December 9, 2019

Vitriol of Venus

Crystals of Copper Sulfate Pentahydrate
(Vitriol of Venus)
Vitriol of Venus was one of the most cherished items in Antonio Neri’s chemical library. In his book, L'Arte Vetraria, he describes its effect in glass this way:
To your great contentment, you will be astonished at what you see. I do not know of anybody else who has tried it this way and I Priest Antonio Neri trying it found it most marvelous, as said above, and it is of my own invention. [1]
To be clear, Neri is claiming a novel preparation technique for a chemical substance that was known since antiquity. I think it is quite reasonable to say that a particular personality trait led him down this path of discovery; his almost maniacal drive for purification. For a seventeenth century alchemist, it is a trait that served him well. Where other practitioners were content to use contaminated or substitute ingredients in their formulations, Neri always goes the extra mile in verifying his ingredients and using any extra filtering steps that might be warranted, no matter how time consuming. More than anything else this is what led him to such success in glass formulation, the assurance of exceptionally clear product and bright colors.

He is so proud of his creation that he spreads the description of his method over four full chapters of the book, going into a level of meticulous detail that is extreme, even for Neri. Rest assured, dear readers, that I have taken the liberty of distilling said description down to a more manageable form for your reading pleasure. Nevertheless, our priest-alchemist clearly puts great stock in this preparation, going so far as to drop hints that this material has uses that go far beyond glassmaking: "Many things could be said here, which are omitted as not being pertinent to the art of glassmaking, which perhaps upon another occasion you will be able to judge." [2]

Before starting, he gives some general advice:
You should make the sulfurs, vitriols, ammoniac salts, and similar materials slowly, over a low fire, so they are well prepared and well opened, because a violent fire will cause great damage to them.[3]
To begin, Neri cuts thin copper sheet into small pieces half the size of a small coin. filling a crucible, he layers the copper pieces with common sulfur (known as brimstone).  He cements the vessel shut with a lid and then buries it in the hot coals of a drafted furnace for two hours.

The dark purple contents are then ground and sifted through a fine screen, mixed with six ounces of pulverized sulfur per pound and then heated in a round terracotta pan, which is sitting in the hot coals. When the sulfur starts to burn, he stirs the mixture, rolling it into balls with an iron hook so it does not stick to the pan, continuing until it stops smoking. He removes the mixture from the heat, grinds it finely, adds more sulfur and repeats the entire process three times.

Neri grinds the resulting reddish tawny colored material into powder, putting a pound of it into a large glass vessel containing six pounds of clean water and gently evaporate away a third of the water. The liquid is carefully poured off and saved. The residual solids are dried and recycled in the process. Now more solids are allowed to settle out of the "beautiful blue" liquid over a two-day period and then the liquid is filtered through a felt cone.

He heats the liquid again, this time evaporating two thirds and then puts the remaining third into glazed terracotta pans, and leaves them in a cold damp place overnight. "You will find the vitriol of copper has formed into crystalline points that mimic true oriental emeralds." The crystals are removed, dried and the liquid is further evaporated in order to obtain more crystals. To the chemist, this material is copper sulfate pentahydrate [4]; today it is sold inexpensively as a fungicide for swimming pools. One reason it was so valuable to alchemists is that when gently heated or added to water this chemical forms a sulfuric acid solution. 
This is the true flaming azure blue [tincture], with which marvelous things are made. It is most potent, and as sharp as anything known in nature today, as can easily be perceived from its odor.
However important this was in other areas of alchemy, those applications do not have any particular relevance to the blue-green tint it imparts to glass, which he does make use of throughout the book. The full recipe was so long that he continued it several times and finished as the final chapter of L'Arte Vetraria. Here are the closing words to the book:
Although I have placed here the way to make this powder with much clarity, do not presuppose that I have described a way to make something ordinary, but rather a true treasure of nature, and this for the delight of kind and curious spirits.[5]
[1] Neri 1612, ch. 31.
[2] Ibid, ch. 133.
[3] Ibid, ch. 37.
[4] CuSO4•5H2O
[5] Ibid, ch 133.
* This post first appeared here on 29 Aug 2014.

Friday, December 6, 2019

Sulfur of Saturn

The Roman Goddess Ops, 'sweet'-heart (and wife)
of Saturn, Peter Paul Rubens c. 1630,
“Abundance (Abundantia).” [1]
Antonio Neri’s 1612 book on glassmaking, L'Arte Vetraria, devotes an entire chapter to making artificial gems. These are made with an especially dense, refractive form of lead glass—what today would be called lead crystal. He made it in small batches, in sealed ceramic vessels; each infused with various metal oxide pigments to give characteristic jewel tone colors.  His secret ingredient for making the finest artificial gems was a material known as "sulfur of Saturn." He writes:
You will have jewels of marvelous beauty in every color, which by far surpass those described above, made with ordinary minium. Because with this true sulfur of Saturn, they will surpass all others by far more than I can write here, as I have seen and made many times in Antwerp.[2]
This "ordinary minium" that he speaks of is one of several oxide forms of lead, also known as 'red lead,' it is bright red or orange in color. As a stable red pigment it was well known to ancient Byzantine and Persian illuminators. [3] It was so popular, in fact, that the word used to describe small intricate pictures 'miniature,' is derived directly from 'minium.' [4] The intricate embellishments in manuscripts ultimately took on the name of the scribes' favorite color.  In glass, minium does not impart red or any other color on its own, but does add 'sparkle' and made Neri's jewels highly refractive to light. 

In the recipe, he uses white vinegar and he reacts it with finely ground minium through a laborious process. The acetic acid in vinegar chemically combines with the minium to form lead acetate, which alchemists called "sugar of Saturn" because it had a distinctively sweet taste (more on that later). [5] Lead (Saturn) could be added to the melt in a number of different forms including acetate, carbonate and various oxides. The heat of the furnace reduces them all and the result is essentially identical glass from any of these sources. The lead acetate has one major advantage that set it apart from the others. Lead acetate is soluble in water and therefore it can easily be purified of contaminants and to a much higher degree. It can be filtered, allowed to stand and decanted after any insoluble impurities settle out.

In other references "sugar of Saturn" and "sulfur of Saturn" are considered synonyms. This is not the case with Neri, for him they are two different substances; the 'sugar' is a precursor for his final product, sulfur of Saturn:
Left in the bottom will be a salt as white as snow, and as sweet as sugar. Repeat the dissolution, and filtering, and evaporation with common water three times. This is the required sugar of Saturn. 
Keep it to calcine in sand in a glass flask or ball in a furnace over a moderated fire for many days. It will further calcine to a color that is much redder than cinnabar, and more finely impalpable than sifted grain flour. This is the required true sulfur of Saturn; purified from the sediment, foulness and blackness that were upon the lead at first. [6]
It would be a reasonable guess that by heating the acetate for "many days" he is reducing it back to minium, its more basic, bright red oxide state, but this time in a greatly purified form.

Unfortunately for his health, in this recipe for sulfur of Saturn, Antonio makes extensive use of heating and evaporation. Even more unfortunate is that in a number of steps he judges the potency of his product by taste. Lead acetate is highly toxic; because it is soluble in water, it enters the bloodstream easily. It attacks the nervous system, accumulates in the bones and can cause organ failure. It is quite likely that by breathing the fumes and tasting crystals of sugar of Saturn, Neri was contributing to his own demise at the relatively young age of thirty-eight. Lead acetate was not the only toxic substance he handled regularly, but it was certainly one of the worst for his health. 

 It does not follow that he was totally ignorant of the risks he was taking. The dangers of heavy metals were recognized from early times. Pliny speaks of the noxious fumes from lead furnaces, and Plutarch opined that lead and mercury mines were "unwholesome and pestilent places." Neri’s own father followed the work of Dioscorides, who wrote that ceruse (lead carbonate), taken internally, could be fatal and that as a sweetener for wines could adversely affect the abdomen and the nerves.

Ancient Romans discovered that when wine started to turn to vinegar, it could be boiled down in lead lined pots to produce a highly sweet syrup called sapa. A late Roman cookbook made extensive use of sapa, which presumably contained considerable lead acetate. [7] It has been conjectured that  lead laced sapa contributed to poisoning among the Roman aristocracy. While lead acetate is a deadly poison, it may be a step too far to imply that it contributed to the fall of the Roman Empire.

[1] Alchemical tradition does provide for an association between the metal lead and the Roman god Saturn. However, there is no such association between 'sugar of Saturn' and either of his consorts Ops or Lua, although Ops, the goddess of abundance (opulence) does rather nicely represent the chemical that made Neri's most opulent artificial gems possible.
[2] Neri 1612, ch. 91.
[3] Chemically, this is Pb3O4, also known as Lead (II,IV) oxide, triplumbic tetroxide. Historically, it was called minium and red lead.
[4] The accepted etymology of ‘miniature’ is from ‘minium,’ but may have been influenced by similar Latin terms such as  minor, minimus, minutus, etc.
[5] Lead acetate comes in two forms; Pb (C2H3O2)4 and Pb (C2H3O2)2, both are toxic; the later variety is soluble in water.
[6] Neri 1612, ch. 91.
[7] “Saba” endures today as a popular grape syrup, albeit without the lead.
* This post forst appeared here on 12 September 2014.