Pages

Wednesday, January 31, 2018

Aventurine

Small amphora in aventurine glass ”,
Murano, Salviati.
With all its glitz and sparkle, aventurine (avventurina) stands out as a flamboyant extrovert among the varieties of glass that were developed and perfected on the Venetian island of Murano. Also known as 'goldstone', it consists of a transparent base glass with myriad reflective crystalline "spangles" running throughout. The classical version is a deep golden brown with crystallites composed mainly of metallic copper, with a few related compounds as supporting cast. However, numerous colors have been developed, including red, orange, yellow, green, blue, violet, black and white. 

Folklore holds that aventurine was discovered by accident ("a venturi") when unknown monks inadvertently dropped copper or brass shavings into a glass melt as early as the thirteenth century. [1] However, more thorough investigations have recently identified 1620 as a likely date for the first appearance of aventurine glass. [2] No example or written account has been found that dates prior to the seventeenth century. An alternate story accounts for the name aventurine being derived from 'adventure'; referring to the difficulty and uncertainty involved in its production.[3] At first, the formula was a closely held secret among a few glassmakers and subsequently it was lost and then rediscovered not once but  twice.

To complicate matters, natural minerals with a similar appearance were named after the glass, leading to the misconception that they were also discovered after the glass was invented. This is clearly not the case. Early examples of mineral aventurine artifacts date to the Neolithic era [4] and can be found throughout history. First century Roman writer Pliny mentions a type of stone with silvery flecks, a passage that was well known when the glass was developed.  The compositions of these minerals were also identified early; either species of quartz that contain flecks of mica, or a type of feldspar (sunstone).[5] Mineral aventurine turns up as the eyes of Greek statues, in stonework mosaics and later in the 'pietre dure' art perfected by the Medici artisans in Florence around the time Antonio Neri started making glass there. The chances are good that examples of the mineral were known to Neri as well as to the glassmakers on Murano, but a recipe for the glass version does not turn up in Neri’s 1612 book; he was apparently too early by a decade.  

The story of aventurine's accidental discovery by monks may well be apocryphal; nevertheless, it is a great entrée to understanding how the formulation works. First, contrary to what the story implies, aventurine is not the result of dumping metallic confetti into glass. The reflective "spangles" (as early researchers were fond of calling them) are actually uniformly sized, mirror-like crystals that are grown in the glass. In truth, the formula is quite similar to recipes already in use by Neri and others; the difference was in proportions and in how the glass was treated after it was in the furnace. The formula for aventurine calls for the addition of copper, iron and tin oxides, to a base that was a hybrid of soda, potash and lead glass. Neri’s recipe #128 is titled "A Proven Way to Make Rosichiero" [6] and provides for all of these ingredients, albeit in lower concentrations. Rosichiero was a transparent tawny red colored glass that was a staple of furnaces throughout Italy. 

The secret to producing the reflective "spangles" was to mix the glass and heat it in the furnace in a normal way, but then to slowly reduce the heat while creating a low oxygen “reducing” atmosphere. The furnace draught was shut; the glass pot was fitted with a tight lid and then covered with ashes and allowed to cool very slowly.  

Initially, the batch is saturated with copper oxide. This means the glass has dissolved as much copper, iron and tin as it can and any further addition of these powders will simply float to the bottom of the pot.  The exact amount of powdered metals able to dissolve is a function of temperature; the hotter the glass the more that will dissolve and the cooler the glass the less that will dissolve. The key concept here is that as the glass slowly cools, the metals start to come out of solution and crystals start to form. There is some complex chemistry happening at the same time; the reducing atmosphere encourage the metals to stay in a pure un-oxidized form,  Furthermore any oxygen or sulfur  that happens to be present will preferentially combine with the iron, leaving the copper crystals pristine. Once cooled to room temperature, a successful batch would be broken away from the glass pot by workers and divided into smaller pieces. Glass artisans wanting to incorporate the aventurine into their work needed to work quickly. They carefully reheated an appropriate nugget and coated (encase) it in a layer of clear glass; once molten, direct exposure to the air would destroy the glittery effect. 

Over time, it was discovered that various colors could be produced with the addition of different chemicals, but the central principal of growing tiny metallic crystals is the same.


[1]  The earliest instance of this story in print that I can find is fairly late;  Faustino Corsi, Delle pietre antiche: libri quattro (Rome: Salviuccio e figlio, 1828)  pp. 166-167.  
[2] Cesare Moretti (†), Bernard Gratuze and Sandro Hreglich,  “Le verre aventurine (‘ avventurina ‘) : son histoire, les recettes, les analyses, sa fabrication”, ArcheoSciences, 37 | 2013, 135-154.
[3] For instance see  Giulio Salviati, “Venetian Glass” Journal of the Society of Arts (Proceedings), Volume 37 (7 June,1889), p. 630
[4] Neolithic Quartz Aventurine Pendant - 7 Cm/ 2. 76 ", green - 6500 To 2000 Bp – Sahara. Item Id: 106549,  Weight: 83 gm. Sahara - Mauritania - Tagant country.
http://ancientpoint.com/inf/106549-neolithic_quartz_aventurine_pendant___7_cm_2___76____6500_to_2000_bp___sahara.html
[5] Dizionario del cittadino, o sia Ristretto storico, teorico e ..., Volume 1 pp. 38-39.
[6] Antonio Neri, L'Arte Vetraria (Firenze: Giunti, 1612).
[7] Sauzay, A. (1870) Marvels of Glassmaking in All Ages. London, 1870 pp. 173 - 175.

Monday, January 29, 2018

Friar Mauritio

Friar Mauritio,
Treasure of the world, f.19v (detail)
Antonio Neri, (1598-1600).
Shortly after ordination as a priest in the Catholic Church, Antonio Neri wrote a manuscript devoted to alchemy, which he called Treasure of the World (1598-1600). It was completed a couple of years before we find any reference to his glassmaking activities. Among the recipes, is one for the philosopher's stone, entitled "Fifth way to make the stone which is very secret." Neri explains that "Friar Mauritio" was a Dominican brother, held prisoner in "The Castle of Naples" by Gilbert Montpensier. There he learned the secret of transmuting mercury into gold. Ultimately, he was freed from his French captors and went on to use his secret to create great wealth. The recipe was passed down through his family, and ultimately fell into Neri's hands. He presents the full recipe, which takes many pages in the manuscript detailing complex alchemical manipulations.

Some background is in order here. In the year 1494, French King Charles VIII amassed a very large army (twenty-five thousand men), and with encouragement  from the duke of Milan, marched straight down the Italian peninsula with the intention of annexing the Spanish controlled Kingdom of Naples, which encompassed the entire lower portion of Italy. But by the time Charles marched into the capital city, his victory was already threatened; a "League" was forming to oppose him among the states of northern Italy. Charles set up an occupation government, quickly appointed Gilbert Montpensier as viceroy and judiciously headed back toward France, but not before having to fight through the League forces blocking his way. The city of Naples would be held by the French for only three months; the occupation government barely in control. Truth be told, it was not only Friar Mauritio who was confined, but the entire French contingent was more or less sequestered to several fortresses in the area, as they were greatly resented and resisted by the Neapolitan people. Soon the Spanish military was on the scene and systematically routed French forces, reclaiming all of the lost territory.

The most likely location of Mauritio's imprisonment was the foreboding Castel Nuovo, but there are other possibilities, among them Castel Sant'Elmo and Castel dell' Ovo. In the same years that Neri was writing about the Dominican Friar Mauritio's imprisonment, Dominican friar Tommaso Campanella was held and tortured in Naples, under suspicion of heresy and conspiracy against the Spanish rule of his native Calabria. His "heretical" views on astrology and departure from sanctioned Aristotelian doctrine earned him a cell at Castel Sant'Elmo. 


The ancient Castle dell' Ovo or "castle of the egg," is located along the bay of Naples. The name derives from a story about the Roman poet Virgil, who at one time was thought to be a great sorcerer. Supposedly, he had fortified the foundations of the castle with a magic "egg," which he concealed there. Legend warns that if the egg ever were to be disturbed or broken, the entire Castle would self-destruct, and a series of great calamities would befall the city.

The endeavor of history rightly demands strong attention to demonstrable facts. Unfortunately, folklore is often a casualty of that process, because, by its very nature it has little to contribute that can be vigorously verified. The identity of Neri’s Friar Mauritio and, for that matter, the existence of Virgil's egg in the foundations of a Naples castle, in all likelihood, will never be confirmed. But these stories have qualities that solid evidence often does not capture. Regardless of its factual content, folklore tells us about the hopes and fears of the people who repeat it; it is a taste of their culture. Folklore also emphasizes that the way we see history is very different from the way contemporaries saw it. We have no choice but to view events of the past through a lens of the present, just as Neri viewed it through the lens of his time. His view of the events was very much colored by legends about characters like Virgil and Friar Mauritio, but also by the promise of transmutation, and fear of the Inquisition. 

* This post first appeared here on 12 March 2014.

Friday, January 26, 2018

Glass or Rock?

Rock crystal ewer, Egypt (1000-1050)
V&A Museum, #7904-1862
Today, a sharp distinction is made between glass and rock, but in the early seventeenth century, differences in the two materials were not so well defined. One was the product of nature and the other of art, but after that the lines began to blur. Philosophers debated weather glass should be classified as artificial stone, and why not? It is a material that was actually made from crushed up rocks (quartz and calcined limestone) with the addition of plant salts. In a very accurate sense, it is a form of artificial rock. 

In his 1612 book L'Arte Vetraria, Florentine glassmaker Antonio Neri repeatedly illustrates the thinking that glass was an artificial form of rock. The very first part of the book concerns itself with cristallo glass, which was considered to be an imitation of natural rock crystal. He devotes a whole section to the imitation of the colorful stones variously known as chalcedony, jasper and oriental agate. About these he writes: 
It is often said, and it may well seem to be true, that art cannot match nature. However, experience in many things shows, and this is particularly true of colors in glass, that art not only challenges and matches nature, but by far exceeds and surpasses it. Why, if you did not see it for yourself, you would find it hard to believe the beauty and great variety of interplay seen in these particular chalcedonies.
Another entire section of the book is devoted to artificial gemstones: rubies, sapphires, emeralds, topaz, chrysolite; he even uses crushed natural gems to color his glass. He describes a "sky blue even more beautiful, from the garnets of Bohemia." 

An earlier 1540 book that Neri read closely was by Italian metallurgist Vannoccio Biringuccio, called De La Pirotechnia. This was the first book entirely devoted to mining and metal foundry practices. Biringuccio was from Siena, but was considered something of a folk hero in Neri’s nearby Florence because he oversaw the casting of iron cannons for the city's defense in the great siege of 1529–30. His book contains a short six-page chapter devoted to glass where he writes:
[I]t [glass] is one of the effects and real fruits of the art of fire, because every product found in the interior of the earth is either stone, metal or one of the semi-minerals. Glass is seen to resemble all of them, although in all respects it depends on art.
This is an observation that Neri echoes almost verbatim in the introduction of his own book, and in this light, it is not so difficult to see what connects glassmaking to alchemy. Neri was in the business of learning nature's secrets, and then using them to create new materials that were even better than the originals. These are aims quite familiar to any modern materials engineer. Neri and his contemporaries were successful up to a point. They were able to create artificial gems and other items that were impressive in color and clarity, yet they lacked some key properties of their natural counterparts, most notably hardness. 

Based on Neri's earliest known writing Treasure of the World, started in 1598, he was already familiar with mining practices before his glassmaking activities started and over a decade before he would write the book. He devotes this early manuscript to "all of alchemy, its furnaces, instruments and the mining of metals." Around 1600 he started work at Prince Don Antonio de' Medici's Casino di San Marco laboratory. Here, he may have had the opportunity to interact with characters such as Filippo Talducci (1543- c.1615), celebrated Florentine chemist and mining engineer, several of whose relatives worked at the Casino. In his 1613 manuscript Discorso, Neri strongly hints that he has personally been to more than one mine in connection with his alchemical activities. "I would not say this, had I myself not had the good fortune of being in such a mine from which, with much artifice, was extracted a small quantity of real gold liquor, which was the true golden seed. […] To this day I have never found another mine like it, and therefore suitable for this purpose."


Today, we hardly associate glass with the raw materials from which it is composed, just as we hardly ever think of metals in their unrefined state. Antonio Neri was more closely connected to the earth, by virtue of his profession, but also because daily life in the early seventeenth century was filled with such activity; refining raw materials into useful forms had a direct and immediate impact on quality of life. Although glass is now manufactured in highly automated facilities, far away from our daily lives, it is still essentially the same product that Neri made. The next time you come in contact with a piece of glass, to pour a drink or look through a window or read the text on a screen as you are probably doing right now, stop for a minute and think of it as Neri did four centuries ago, as artificial rock.

* This post first appeared here 17 Feb 2014.

Wednesday, January 24, 2018

Reticello

Reticello by Aaron Tate (detail),
Photo by David Lindes.
In fine art of the early twentieth century, ‘cubist’ painters and sculptors caused a sensation by pioneering a style that was fluid and emotional yet rigorously geometric. Earlier still, eighteenth century Baroque musicians thrilled audiences with ‘counterpoint’; music that was melodic and harmonious yet structured with an almost mathematical precision. The recurrence of similar themes in widely differing arts is perhaps not so surprising. When successful, these are themes that resonate deeply within us; they amplify what is common to our nature and remind us that we are in the world together. 

In sixteenth century Venice, a form of glasswork emerged that anticipated these juxtapositions to similar popular acclaim. In fact, the technique of ‘reticello’ went on to become an enduring trademark of Murano technical skill and artistry. To this day, well executed pieces of reticello glass are coveted by collectors and displayed with great pride. 

The form is characterized by a transparent glass base which is embedded with a network of crisscrossing threads of opaque glass, forming a lattice of diamond shaped pockets. Classically, white 'latimo' glass was used in a clear 'cristallo' base.The overall effect is reminiscent of fine lace or of fishing net, both of which are strongly evocative in Venetian culture. When executed in the classical technique of the island’s glassblowers, each diamond in the pattern contains a single bubble of trapped air, perfectly centered and uniformly sized. 

In general, the latticework theme in art traces to much earlier times. It is common in Hellenistic and Islamic art. To an extent it is a natural consequence of mosaic making. However the application of the pattern in glassblowing requires a completely different approach and a complex series of steps. First a ‘filigrana’ bubble is formed. To accomplish this, a series of pencil thin glass rods called ‘canes’ are laid side by side, touching each-other, in a pan ('piera' in Venetian, 'pietra'=stone in Italian) and partially fused together in the furnace.[1] Each cane is made of transparent glass with a core of opaque glass (a thread) running its entire length. Glass artist Emilio Santini writes:
On Murano, the "piera" is coated with a thin layer of clay from the laguna marshes. This is rich in salt and does not stick too much on the glass even if overheated. Then they preheat the, piera (called a 'plate' in the US) to dry the clay. While it is still hot but not scorching they lay down the canes so they are partially warmed before they go in the furnace. Remember that they are not annealed [and could easily shatter from thermal shock]. Then two little square metal pieces are placed at the two ends to hold the cane in place. These are called fereti (V) ferretti (I) . Some of these same terms are also used in the US by skillful glass blowers.[2]

On the end of an iron blowpipe, the fused mat of glass rods is wrapped around into a hollow cylinder. Next the open end is gently worked closed. This forms a sealed bubble of glass that can be manipulated by standard glassblowing techniques. Soft from the heat of the furnace, the glass can be given a twist so the parallel threads form a loose spiral. This piece is stored in a ‘garage’ kiln while a second bubble is formed in the same way but with the spiral running in the opposite direction. The first bubble is opened wide at one end, removed from its iron rod and placed in a cradle on the floor which holds it upright. The second bubble is carefully lowered into the open end of the first bubble. The glass artist stands above, with the second bubble inside the first and blows, inflating the inner glass until it comes in contact with the outer bubble.

Because both glass bubbles are formed with canes, they have a ribbed texture both inside and outside. When the two glass bubbles contact each other, the high-points of the ribs meet first, which is where the threads of the two bubbles cross. The valleys of the ribs are where one cane is fused to the next; these areas cross between the bubbles at the center of each diamond in the pattern. The two bubbles fuse together trapping air in the valleys. As the glass is worked and heated these regions form small, perfectly round air bubbles trapped inside the glass. You can see this for yourself by taking two or three fingers of each hand and crossing them against each other. Imagine the threads of opaque glass running down the center of each finger. The air bubbles are trapped where you can see light between your fingers.
Reticello ("fillacello") style flamework pendant,
by Adam Reetz 2015.

The distinctive diamond pattern of reticello has been successfully achieved with other glassmaking techniques. In flameworking, glass is manipulated using only a torch and handtools. The torch is fixed to a bench where the artist either stands or sits. In general, this is a more accessible technique because it does not require a glass furnace. Here, the reticello pattern is accomplished by starting with glass tubing. The crisscross pattern is ‘painted’ onto the outside of the tubing, one line at a time; with very thin rods of glass known as “stringers.” In one version, evenly spaced straight parallel lines are drawn along the length of the tube. The tube is then reheated in the flame and twisted. Next, a second set of lines are drawn twisting in the other direction, forming the diamonds. The ends of the tube are drawn down and one end can be mounted to a rod or tube of glass and further manipulated in the flame. 

In a testament to the continued popularity of reticello, a new colorful variation of the flamework technique has emerged within the past decade, among American flameworkers. [3] This has been playfully dubbed “fillacello.” After painting the fishnet pattern on tubing, and further working the glass, the individual diamonds are “filled” with various colors using stringers. The resulting effect recalls mosaics and the ancient inspirations of reticello.

[1] The iron tool used to move the 'piera' of filigrana cane in and out of the furnace is called a 'pasorale' (V), 'pastorale' (I) = pastoral, named after the staff carried by the pope. It consists of a straight rod with a U-shaped fork in the end. Thanks to Emilio Santini for his kind assistance with Muranese terminology and knowledge of hotshop technique.
[2] Private correspondence, March 2015. Here is a video of the reticello technique as executed by American glass artist Dante Maroni. http://www.youtube.com/watch?v=WJ3DDon23Lc
[3] My research point to the first examples of this technique emerging on the west coat of the United States around 2005-07. (Further information on its origin would be greatly appreciated).




Monday, January 22, 2018

Filigrana

Mezza Filigrana footed vase, circa 1950s,
by Dino Martens (for Aureliano Toso).
Filigrana is a classical glassmaking technique developed in the sixteenth century on the Venetian island of Murano. In the broadest sense, a piece of filigrana -- let's say a vessel -- is composed of transparent glass with very fine vertical threads of color running through it. Traditionally, these threads were opaque white lattimo (milk) glass, running through a colorless high quality product known as cristallo. Because of this, the technique was originally known as “latticino,” a term still in use, but now falling out of favor and being replaced by filigrana (filigree), a name that does not imply any particular color. 

Over the centuries, this and closely related techniques became a kind of trademark for the Murano glass industry. Parallel threads in a loose spiral winding around a vessel from top to bottom form what is perhaps the most basic application of the method. This is known as mezza filigrana (half filigree). The reason for the “half” becomes apparent when we consider its far more famous cousin reticello. With this technique, two sets of threads are used winding in opposite directions to form a fishnet pattern of  diamonds. The name recalls reticella, a traditional Venetian lace. When the work is done properly, tiny air bubbles are trapped inside the glass, one in the center of each diamond of the fishnet pattern.

Even more exotic variations have been developed, which we will discuss another time. First, let's explore how the glass artisan is able to achieve these fine threads in the glass, so perfectly spaced. I should hasten to say that I am not a glassblower and this description is not an instructional, but simply a window into some of the fabulous artistry that takes place in a glass shop. These techniques take hundreds or thousands of hours of practice to master. Even a shallow understanding of the steps that go into a piece of filigrana lead to a far richer appreciation than simply being able to identify it by name.

 “Cane” is a general term for long straight rods of glass. They have many uses in glass artistry and the method by which they are made can be surprising the first time you see it done. It is the same method as was practiced a thousand years ago. A gob of molten glass is removed from the furnace on the end of an iron rod. A second rod is attached by another artisan, with the lump of molten glass between the two rods. They start to pull in opposite directions, slowly at first. They swing and manipulate the hot glass as it cools, forming a mass of relatively uniform diameter. They continue to walk away from each other, the glass pulling thinner as they go. Practiced artisans can end up with a uniform pencil thin straight rod of glass that extends for many meters. It is laid on spaced wooden slats on the floor, allowed to cool and then snapped at regular intervals to form smaller rods.

In the case of filigrana cane, the artisan starts with a smaller gob of opaque glass; let us say lattimo (white). This gob is then dipped into clear glass, which encases it in a heavy transparent layer. When the cane is pulled, the result is a clear rod with a filament of opaque white glass running down the center. Short lengths of cane are laid side by side in a pan. The pan is heated so that adjacent rods start to fuse together into a mat. The glass artist will again take a gather of glass from the furnace around the end of an iron blowpipe and flatten it into a disk, leaving the blowhole unobstructed. The disk, known as a "collar"[2] is touched to the mat of canes at one end and rolled so that the canes wrap around and form a cylinder. The open end of the cylinder is then closed down, in effect forming a bubble on the end of the pipe. The glassblower can then treat this as if it were a bubble formed straight out of the furnace, but of course, this bubble has the threads of lattimo glass running through it. The bubble is then manipulated into a finished piece. [2]


Miniature flameworked vessels (aprox. 3cm tall)
in the style of filigrana, by Emilio Santini. 
Outside of the hot shop, there are methods that use only a torch to duplicate the appearance of filigrana and reticello on a smaller scale. This involves starting with glass tubing and "painting" the threads on using thin "stringers" of glass. It is a completely different technique which requires an entirely different set of skills. In the right hands, the results can be strikingly similar. Now that we have the basics down, we can discuss the more spectacular variations that have been developed, which we will talk about next time.


[1] "Colletto"(Italian) "Coeto" (Venetian), means narrow neck or little neck.


[2] The following Youtube video shows American glass artist William Gudenrath, assisted by Harry Siemens pulling filigrana cane and executing a reticello vase at the Corning Museum of Glass. http://www.youtube.com/watch?v=xCrdewFgObc

Friday, January 19, 2018

Early Modern Glass Furnace

From "De re metallica" 
Agricola (Georg Bauer) 1556.
In the seventeenth century, glass furnaces represented a pinnacle of technology. True, the ability to achieve the high temperatures required to melt glass had been around for centuries – high enough to melt gold, silver and copper as well. What made the glass furnace remarkable was its refinement. It made efficient use of its hardwood fuel and was able to maintain a controlled, even temperature long before any thermometer could measure it. In fact, in the early seventeenth century, Galileo was only just beginning to use glass bulbs and tubes to measure differences in ambient room temperatures.

In Florence, the construction used was typical of the time throughout Europe, called a "beehive" furnace because its shape resembled the elongated dome of a beehive. A double wall, built of fire resistant bricks, provided further insulation, trapping heat inside. Vertically, the furnace was divided into three levels, each forming a wide open chamber. The bottom space was used to build the fire, and had one or two openings to the outside, used to add wood fuel, rake the coals, or shovel out ash. The second, central level was where the pots of glass resided. A central hole or "eye" on the floor directly exposed the fire pit below. The space directly next to the eye was the hottest, and temperature could be further controlled by moving the crucibles farther away or closer to the eye. A number of openings in the wall allowed gaffers access to the glass pots, and at least one larger opening was used to place new crucibles, or rearrange the existing ones. The upper chamber was used to control the draft, and sometimes for annealing. Again, a central hole in the floor of this (top) level allowed exhaust gasses to leave the glass chamber and an opening to one side vented the exhaust.

In his book, L’Arte Vetraria, Neri is careful to stress that only dry oak or other hardwood should be used because it burns cleanly, and will not deposit ash or creosote in the glass.
The furnace should have dry wood, hard wood of oak because soft wood tinges the furnace and does no good. Stoke it steadily and continuously so that the flame is always clear, and there is never any smoke, which is very important in order to make a beautiful cristallo.
Once a finished piece of glassware is made, it must be allowed to cool slowly, over a period of many hours. This was often accomplished by building a long enclosed horizontal trough that connected to the furnace. A draft opening at the far end allowed heat from the furnace to be drawn in, and finished pieces were placed in a pan at the furnace end and then slowly pulled by a chain further and further down the trough toward the cooler end. This "annealing" process ensured the glass would not develop stresses and crack as it cooled.

Although Neri does not concern himself with the vagaries of furnace construction in the book, it is clear that he did possess considerable knowledge on the subject. Several of his unconventional methods for making pigments for glass involve taking bricks out of the furnace wall to stash chemicals for long term exposure to the heat.
Take small pieces of copper and put them inside the arches of the furnace. In that place, they will be within the walls. Leave them that way until each piece of copper is well calcined, using a simple fire.
While it is true that artisans of the early seventeenth century did not possess the same understanding of nature that we now enjoy, they did have a working knowledge that served them very well. It was backed by a theoretical framework that was quite sophisticated and was consistent with what could be observed and measured at the time. This is no different from our own modern understanding of nature: sophisticated and consistent with what we can observe and measure.

*This post first appeared here 24 January 2014

Wednesday, January 17, 2018

The Duke's Oil

Trajan's Column, Rome
Giovanni Battista Piranesi (1758)
In the seventeenth century, alchemy was a dangerous business. Yes, there were risks of sanctions by the authorities, which could be very harsh, but great dangers also lurked in the chemicals themselves. Some like lead and mercury accumulated in the tissues slowly, over a period of years, others could kill a man within a few minutes. Cardinal Francesco Maria del Monte had personal knowledge of just how deadly the products of alchemy could be.

In Rome, Del Monte was the unofficial ambassador to Florence and the Medici family. He regularly greeted dignitaries from around Europe and dazzled them in his sumptuous palace. He was an avid glass collector, a patron of the arts and more quietly a dedicated student of alchemy. He was a lifelong friend to Don Antonio de' Medici and visited the prince's laboratory in Florence several times. This is where Antonio Neri was making glass early in his career. Later, Neri worked at a secondary Medici glass furnace in Pisa, where the cardinal had fancy glass table service made for the Vatican.

About a two mile walk from Saint Peter's Basilica, over the Tiber River, directly toward the Colosseum, is Trajan's Column. It commemorates Emperor Trajan's victory in the Dacian Wars at the beginning of the second century. It displays a scroll in base relief that winds all the way from the pedestal to the capital. The monument is large enough to contain an internal staircase leading to an observation platform at the top. In 1587, it was crowned by a bronze statue of Saint Peter that still stands today; the initial model was sculpted by artist Tommaso della Porta, who was under the patronage of Cardinal Del Monte. 

Giovanni Baglione picks up the story in his book Lives of Painters, Sculptors and Architects:
That man [della Porta], I think, suffered mentally and it showed at the end of his days. When he felt some kind of tingling in his abdomen, he went to the Cardinal del Monte his friend and master and asked for some of the "grand duke’s oil" that he hoped would relieve the tingling. The Cardinal indulged him; gave it to him and said that he should apply it only to the wrists and only a little, because the oil was potent and it could make him feel sick. He took it and went back to his house and after dinner he sent for the barber, to administer the medication, and while the messenger went on, Tommaso impatient and simpleminded, applied the oil himself and instead of touching the wrists, as the Cardinal had instructed, he lathered the arms, chest, body and entire abdomen, so that the powerful oil went to the heart and in fact killed him. The barber arrived to medicate him, found him dead and all attempts at revival were in vain. Tommaso della Porta, was buried at Santa Maria del Popolo.
The "grand duke's oil," was widely known, and widely cited in references throughout Europe well into the 19th century. Its other name was oil of tobacco – essentially a distillation of almost pure nicotine. In very small doses, it acts as a stimulant of the central nervous system, in slightly higher doses it is a narcotic, even greater, but still relatively small amounts act as a quick and lethal poison absorbed directly through the skin. Ingesting a single pill capsule of typical size full of pure liquid nicotine is more than enough to kill an adult in short order.

This story has one final twist. Antiques dealer Domenico Lupo was one of the men present at the reading of Della Porta's will on 7 March 1607. Twenty-five years later, an inventory of Lupo's assets listed a "small figure half old and half new that is said to be of Prior Ant. Neri," either the glassmaker or possibly his great uncle. 

* This post first appeared here 5 February 2014. 

Monday, January 15, 2018

Botanical Gardens

Rudolf  II as "Vertumnus"(c. 1590)
Giuseppe Arcimboldo.
In 1543-44 new botanical gardens were founded in Pisa; L’Orto Botanico was its Italian name. It was the very first garden devoted to the research of plants. Literally within a year, similar gardens sprung up in Padua and Florence, and many other cities followed shortly thereafter. Exotic foreign species as well as important local plants were grown, studied, harvested distilled, and imbibed. These horticultural stations became centerpieces of medical programs throughout Italy, and then greater Europe. The concept of herbal (“simples”) gardens was centuries old. Almost every monastery, convent and hospital maintained a space to grow the plants they needed to transform into medicines for care of the infirmed. The grafting of fruit trees was actively practiced since before Roman times, but these new gardens were specifically planted as research spaces and run by universities. 

When Neri Neri, the father of glassmaker Antonio Neri, studied medicine at the Studio Fiorentino  in the mid 1550s, there can be no doubt he spent time at the gardens in Florence, and quite possibly at the ones in Pisa. (The Pisa gardens were moved twice before arriving at their current location in 1591). This was a period of vigorous expansion in the field of herbal medicine. Competition was fierce to obtain and study medicinal plants from around the globe. Cosimo I de’ Medici poured money into the medical school in Pisa, attracting students and faculty from around Europe. In 1554 famed botanist and physician Andrea Cesalpino took over the Pisa gardens  from his teacher, Luca Ghini, who first built them. 

In 1602, Neri was to be found working alongside Niccolò Sisti at the grand duke’s secondary glass furnace along the Arno River in Pisa. According to Neri’s own account, Pisa is where he worked on ferns as an alternative plant salt for glass and mentions many other plants with which he experimented: 
Set about making ash in the way previously described, however use the husks and stalks of broad beans after the farmhands have thrashed and shelled them. The same may be made from the ashes of cabbages, or a thorn bush that bears small fruit, called the blackberry, even from millet, rush, marsh reeds, and from many other plants that will relinquish their salt.
In a letter to Neri from his friend Emanuel Ximenes, the Antwerp based Portuguese banker expressed surprise that Neri was able to devise a fern based glass salt recipe so quickly. In all likelihood, Neri would have had access to the botanical gardens and the small adjacent laboratory located just a few blocks from the glass furnace. In the period of time the glassmaker spent there, the directorate of the gardens changed hands from Francesco Malocchi to Marco Cornacchini. Both of these men avidly pursued new botanical based cures, and corresponded internationally. 

In his Glassmaking book, L’Arte Vetraria, Neri devotes a number of recipes to making paint pigments from flower blossoms. While he could have easily obtained his stock material from any number of sources, the botanical gardens would have certainly provided a convenient cache of many different varieties.

In the winter of 1603-4 Neri traveled From Pisa to visit his friend in Antwerp. If he followed Ximenes suggested route, he would have passed back through his native Florence, then on to Venice where he would meet up with a caravan of merchants on their way to the Frankfort spring fair, and then on to Antwerp by river. Upon his return to Italy, seven years later, he wrote his glassmaking book, but then devoted himself fully to alchemy and medicine. In January of 1614, in what might be the very last manuscript he worked on before his death, he wrote about some recipes “copied from an old book here in Pisa.” At that time, the director of the botanical gardens was Domenico Vigna, who continued to direct the gardens on and off until 1634.

It would be interesting to know how Neri the alchemist thought about his raw materials. Did he see all the possibilities of what could be made with them? For instance, how did he approach a towering pile of May ferns, large enough to produce a hundred pounds of ash, or a giant sack of rose petals? Did he ever lean forward and breathe in the delicious musty aroma? Did he ever dig in with his hands and bury his face in an arm-load of soft, pure color? How could he not?

*This post first appeared here 22 Jan 2014.

Friday, January 12, 2018

Incalmo

Incalmo vessels by Tapio Wirkkala for Venini.
In this post, we will explore one of the classical techniques of glass art. Along with filigrana, latticino, reticello and pezzato, incalmo is a classical Venetian technique well established in the art, even if poorly understood by many outsiders.

‘Incalmo’, in Venetian dialect literally means “graft” as in joining two plants. That is a pretty good description of how this effect is achieved; think of a vase whose bottom-half is one color and top is another. The glass artist blows two separate bubbles of glass, opens them and joins them together to form a single bubble. It is a difficult operation because the two open lips must be exactly the same size to join properly. The process can be continued to add more colors; virtuoso pieces may include several sections, each a different color. In addition, the position of the iron rod that the artist uses to hold the bubble can be changed while the piece is under construction, leading to asymmetrical effects.
16th century incalmo plate,
unknown artist.
The above description is the classical way of achieving incalmo, but modern materials and equipment allow artists to achieve a similar effect with considerably less skill. For instance, precise diameter glass tubing is now available in a wide variety of colors. This can be cut into rings with a saw, then stacked in a kiln and fused together. From there, this “prefabricated incalmo tube can be worked by traditional methods. Whether or not this meets the definition of true incalmo depends entirely on whether one focuses on the method or on the end result.


9-10th century incalmo vase,
Syria or Iraq.
The name ‘incalmo’, was applied to glass in the first half of the twentieth century by the Venini factory on Murano, in Venice. [1] However, both the word and the method are much older. The Venini artisans revived the technique to great acclaim, but Venetian examples date from the sixteenth century and Islamic examples from ninth century Syria have also survived. It is not hard to imagine that this joining technique was experimented with shortly after glassblowing became common around the first century BCE. However, what is truly amazing is that any of these early examples survived to be sold to customers without breaking in the cooling process. The reason for this is a technical issue that we have not discussed yet.

All glass expands a little when it is heated and shrinks when it cools. Different formulations of glass generally expand by differing amounts. When a single piece incorporates more than one type of glass, and the thermal expansions differ significantly, the result is disaster. After the piece is finished it is placed in a kiln where it slowly cools back to room temperature. Because of the mismatch, one area wants to shrink more than the adjacent area and the glass cracks along the join. The expansion and contraction is microscopic, but it is enough to ruin hours and hours of work, leading to much gnashing of teeth the morning after, when the finished work is inspected. 

The Venini glass masters had the benefit of this knowledge, but for earlier artisans, trial and error must have played a big role in determining which formulas were compatible. Different colors mean different metallic additives and to match expansion other ingredients would need to be adjusted. Today, manufacturers produce glass in a series based on expansion; artists can be relatively sure that two different colors from the same series can be “grafted” and not self-destruct when cooled.

[1] I have not absolutely confirmed this, but authoritative secondary references credit Venini, and I can find no mention to "incalmo" as a glass technique prior to the twentieth century.

Wednesday, January 10, 2018

A Recipe for Transmutation

The recovery of copper from vitriolated waters,
from De Re Metallica, 1556, by Agricola (Georg Bauer).
In Discorso, one of the last manuscripts written by Antonio Neri before his death, he reveals several transmutation recipes. One describes turning iron into copper; it is instructive because it uses common materials that we can identify and because the chemistry is now well understood.

Take some iron sheets and lay them in vitriol water, being immersed in that, they will rust. Scrape off this rust, which will be a red powder, melt it in a crucible, and you will have perfect copper. The same effect can be had from various waters that are naturally vitriolated, because they flow through mines of vitriol, such as those of a source some distance from Leiden, and another below the fortress of Smolnik, [now in Slovakia].

Vitriol is an acidic sulfate dissolved in water, it could be made in the laboratory, but it also occurred naturally around mining operations where sulfurous minerals were present. Alchemists knew this solution as "oil of vitriol" and "spirit of vitriol." The mine that Neri references in Smolnik became famous for transmutation. As late as the eighteenth century, scientists and experimenters from around Europe made the pilgrimage to see the effect for themselves and tried to figure out what was happening. It may be a surprise to some readers, but following the above instructions will, in fact, produce copper just as Neri claimed. There is no deception or sleight of hand involved; the explanation is straightforward, but first, Neri treats us to a rare glimpse of his own reasoning on the subject:

Some estimate and not without reason, that this experiment, being used to prove the transmutation of metals, is not suitable for this purpose. They say that the vitriolated waters become such because they are already heavy with the corrosive spirits of sulfur, having passed through the copper or iron mine, these waters corrode copper in the same way aqua fortis corrodes silver. So that really the substance of the copper remains in the water, which attacks the surface of the iron, which always remains iron. However, if that were true then the iron would not get consumed, or if it were consumed it would mix with the substance of the corroded copper in the water, and if it were fused, it would remain a mixture of iron and copper. And yet in this experiment, all the iron is consumed; it is reduced by the vitriolated water into powder, […] which in the fusion is still pure copper, so there should remain no doubt that this is a true transmutation.[1]

Given the state of chemistry at the time, Neri's reasoning is clear and rational. The iron disappears and a copper coating materializes in its place. What better evidence of transmutation could one ask for?

The key to what was actually happening is in the criticism leveled by skeptics. It turns out that they were on the right track, but neither they nor Neri had the full picture. Today, we understand it as a simple ion exchange reaction; blue vitriol water is a transparent saturated solution of copper sulfate (CuSO4), in the presence of solid iron, the liquid dissolves the iron; copper from the vitriol is deposited in its place. The two metals, copper and iron, change places: the iron dissolves, forming green vitriol (FeSO4) and copper is expelled from the solution. The result is a reduction in the amount of the iron, which is replaced by a proportional deposit of pure copper.

On a physical level, this chemical reaction is no different today than it was in the seventeenth century. What has changed is our interpretation of the experiment. What Neri viewed as a transformation of iron into copper, we now see as an exchange. There is, however, a deeper lesson in all this. As an alchemist, Antonio Neri was not being delusional or dishonest; he was careful, observant and applied his knowledge as best he could. This is no different from the way science works today. Both then and now, to be successful in unraveling nature’s secrets, one must become accustomed to a very uncomfortable situation: In the past, careful reasoning by brilliant thinkers has led to utterly wrong conclusions. The fact that much of our world is a mystery is unsettling; that the very process we use to understand it can be so flawed is harder to accept. Even more difficult is that the faculty we all rely on for survival—our own wits—can lead us so far astray.[2, 3]

[1] For more, see Discorso sopra la Chimica: The Paracelsian Philosophy of Antonio Neri”, M.G. Grazzini / Nuncius 27 (2012).
[2] This post first appeared here on 31 January 2014.
[3] For further reading,  see Pavol Rybár, Mário Molokáč, Ladislav Hvizdák, Jana Hvizdáková "Utilization of simple presentation methods for comparative studies in the historical mining" Geotourism 1–2 (40–41) 2015: 49–54.  http://journals.bg.agh.edu.pl/GEOTURYSTYKA/2015.40-41/geotour.2015.40-41.49.pdf

Monday, January 8, 2018

Alberico Barbini

The island of Murano , circa 1600
attributed to Danckerts
In the early seventeenth century, Antonio Neri began preparing batches of glass for artisans of the royal family in Florence, Italy. This was a specialist vocation undertaken by alchemists, which by schooling, Neri was. His job as “conciatore” involved procuring the ingredients, preparing, mixing and melting them and working with the glass artisans, adjusting the consistency and colors for the work being done. It was a position that carried great prestige, and Neri’s book on glassmaking [1] would cement his name in history. 

Shortly before Neri was born, in 1576, the grand duke of Tuscany, Cosimo I de’ Medici, brokered a special deal with the doge of Venice to have master glass artisans come to Florence and teach their secrets. These men were from the island of Murano; the most famous center of glassmaking anywhere. There is only scant evidence that Neri himself traveled to Venice and perhaps only once, but there is no doubt that he benefited greatly from the knowledge of Muranese workers in Florence, Pisa and Antwerp during his lifetime. 

Over the intervening centuries, the title of the glass batcher changed, but the tradition and prestige of glass formulation continued well into the middle of the twentieth century. In fact, even today, among the small glass manufacturers that compose the studio glass movement, the glass batcher is considered to be something of a modern alchemist; keeper of the arcane knowledge of  the chemicals and amounts necessary to produce special colors and adjust properties of the glass.

Now, fast forward four centuries from Neri's Italy; in the early 1920s, a Milanese lawyer named Paolo Venini partnered with a Venetian-born antique dealer friend, Giacomo Cappellin, to start a new glass factory on Murano. [2] Even as recently as this, the glass batcher still held a respected position both within the factory and the community. Through several incarnations over the next half century Venini grew a world-wide reputation for innovative designs, of which color played an important part. They are specifically associated with the fazzoletto (handkerchief) style vase and the incalmo technique of fusing two or more colors of glass seamlessly in a single furnace-blown piece. 

In 1925, Cappellin split from Venini and took many of the craftsmen with him, in 1933 the new business was acquired by Pauly & C. Again, chemical knowledge and the artistry of reproducing ancient colors made a worldwide reputation. [3] As ownerships changed hands like cards in a game of poker, artisans shuffled between factories. It is easy to lose track of the individual glassworker. Even for a period so recent, many records exist only in the heads of the family members still living on the island. 

In 1956 the Stazione Sperimentale del Vetro (Experimental Station for Glass) was started on Murano with the mandate to preserve and promote the technical aspects of Italy’s glassmaking heritage. [4] The new institution was regarded by some traditionalists with great suspicion, but as we will see, others embraced the resource.

I recently sat down with renowned glass artist Emilio Santini, who today carries on a six-centuries-old family tradition in glasswork. [5] Emilio had recently called home, to Murano, which led to his father’s recollection of an uncle, who worked making color for Venini and Pauly. Here Emilio recounts the conversation:
Alberico Barbini was the uncle of my father, Mario Santini and the man in charge of making the glass batch “partie” (Venetian) “partite” (Italian). He was the brother of my grandmother, Delfina Barbini. He was not the only one [in my family] who worked for Venini in the early days but the most respected. At Venini he worked formulating glass after another great batch maker, [Albino] Carrara. 
In the early to mid [twentieth] century the batch maker still held an important position in the factory, not like now, you know, and he kept his formulations quite secret, although this relative of mine, Alberico, was smart enough to use the most modern technology available at that time. 
He was different from other batch makers in that when the Stazione Sperimentale del Vetro opened, he made extensive use of it in reproducing colors. At that time, and even now to an extent, the institution was not seen as good for traditional Murano glassmaking. 
He later moved on to Pauly where he was in charge of reproducing the glass colors that were in use in the seventeenth, eighteenth and nineteenth centuries. First, he assisted in remaking broken or missing pieces in private collections, then later in making reproduction antique stemware at Pauly that was impossible to distinguish from the originals. 
You must realize that all this does not come from documents but from the memory, still very sharp and lucid, of my father.


[1] L’Arte Vetraria, (Neri 1612).
[2] Paolo Venini http://en.wikipedia.org/wiki/Paolo_Venini also see https://www.facebook.com/pages/Venini/198475426829887
[3] Pauly & C. Compagnia Venezia Murano http://en.wikipedia.org/wiki/Pauly_%26_C._%E2%80%93_Compagnia_Venezia_Murano
[4] Stazione Sperimentale del Vetro  http://www.spevetro.it/indexENG.htm
[5] Emilio Santini http://www.cmog.org/bio/emilio-santini
* This post first appeared here on 25 Feb 2015.

Friday, January 5, 2018

Fabergé and Purpurine

Fabergé c.1900. Purpurine cherries,
nephrite leaves, gold stalk, rock crystal pot.
Peter Carl Fabergé is known the world over for producing elaborate jeweled fantasy eggs for the Russian royal family in the late nineteenth and early twentieth centuries. [1] The artisans of his firm made use of a wide variety of exotic and precious materials in the execution of their commissions and later in items made available to the general public. Among the most exotic and sought after were objects made with an opaque bright red stone-like material known as ‘purpurine’. This was a glass based concoction whose composition was kept a tightly guarded secret. In fact, it was so tightly guarded that the formula was subsequently lost. Purpurine was typically cast into blocks which were then sawed and carved using traditional lapidary and gem carving techniques. The final appearance was of an unknown exotic mineral.


Red Glass Beads, 1st cent. BCE, Tissamaharama, Sri Lanka
The origin story of purpurine begins much earlier than Fabregé, in fact, not hundreds but thousands of years earlier. “The art of making this type of glass seems to have originated in India; glass beads of a similar material have been found in the Indus Valley and were dated to the late 2nd millennium BCE.” [2] In southern Sri Lanka deep red opaque glass beads have been found dating to the first millennium BCE; these turn out to be closely related to purpurine, through a long glassmaking tradition. [3] A version of the bright red glass was made in the Egyptian- Roman era. The first century CE historian Pliny the Elder noted that in Greek it was called ‘haematinon’ or blood-red ware. [4] He implied that this specialty glass, was routinely produced in Rome and indeed archaeologists have recovered numerous examples. The glass was used in a wide range of applications from dinner plates to pieces of elaborate mosaics. Eventually, though, the method of making haematinon was forgotten and remained so for several hundred years.


A small (1cm) Medusa's head in
opaque red glass c.1st. cent. CE.

The Renaissance era had been marked by a strong motivation to recover lost knowledge of the ancient world, but many challenges were beyond the technology of the time. However, attempts were made that eventually led to success.  In the second half of the 16th century, Pope Gregory XIII instituted the Vatican mosaic studio to decorate the new Saint Peter’s Basilica, begun by Pope Julius II in 1506. As an aside, this workshop continues today, repairing and conserving the ceilings of St. Peter’s. [5] Having quickly exhausted local talent in Rome, Gregory brought in Venetian masters to teach the art. With the mandate to make the mosaics appear as if painted, the studio developed many new formulations for the glass tesserae – the individual tiles used to form mosaics. It was in this environment that the deep red purpurine [Ital: porporino] was eventually rediscovered.


C. 1st cent. BCE/CE Roman bowl (patella cup) in
red opaque glass (haematinon).

It is still an open question whether the secret was discovered in Rome or brought there. There is evidence that the fabled red glass was being produced in Venice in the eighteenth century and possibly earlier.[6] One (Swedish) source credits Vatican studio employee Alessio Matteoli, in the 1700s, when he oversaw the development of many new colors. In the early 1800s, interest rekindled in the ancient material and by then, analytical methods were up to the task of finding their composition. German chemist, Martin Heinrich Klaproth, analyzed haematinon from the Villa Jovis, a first century palace built by Roman emperor Tiberius on the island of Capri in southern Italy. [7] He correctly found copper, but incorrectly assumed the material was glassy slag, a byproduct of the smelting process. Later, in 1844, Schubarth did further work indicating haematinon was, in fact, a true glass. [8] King Ludwig I of Bavaria intended to build a reconstruction of a Pompeian villa for educational purposes. He assigned Max Joseph von Pettenkofer to the task of rediscovering the method of manufacturing the antique “blood glass,” and the young chemist reported success in 1853. [9] His process fused standard alkali-lead glass with copper oxide and magnetite in the presence of small amounts of magnesium oxide and carbon, followed by very slow cooling of the resultant mass, which would then take on a deep red color.


Roman Mosaicist
Michelangelo Barberi, 1809.
Other sources name one of two students of the famous Roman mosaicist Michelangelo Barberi (1787–1867). Barberi had a long standing relationship with the Russian royal family and accepted Russian pupils at his studio in Rome, he even set up a mosaic shop in St. Petersburg at the request of Tsar Nicholas I. [10] In 1846, these two pupils of Barberi, brothers Giustiniano and Leopold Bonafede were called to St. Petersburg by the tsar to work for the royal court. Giustiniano (1825-66) had served as head chemist at the Vatican studio and both would attain that post for the tsar at the Russian Imperial Glassworks. It is Leopold (1833-78) who is now most often credited with the invention of purpurine as a recreation of the fabled haematinon. His formulation was based on a standard potash lead crystal.


Purpurine taza made at the Russian
Imperial Glassworks, c.1867.
(Shown at Paris Exposition)
The first documented uses in objects of art were five entries of the Imperial Glassworks at the Paris Exposition Universelle in 1867, for which the glassworks was awarded gold medal status. [11] “After Bonafede's death in 1878, purpurine continued to be made at the factory under the direction of the chief chemist, S. P. Petuchov.” [12]

In 1882, after considerable training and apprentice work, which began when he was a teenager, a 46-year-old Peter Carl Fabergé fully assumed control of his father’s small jewelry shop in St. Petersburg. Within a short time, he was supplying the royal family with his exquisite eggs and many other items made by a growing assemblage of master craftsmen. The first use of purpurine by the Fabergé shop occurs early in Carl’s tenure, perhaps as early as 1880. Initially, they use material supplied by Petuchov at the Imperial Glassworks. Over a period of years, though, the Fabergé shop developed its own recipe based on soda lead glass, more similar in composition to the ancient samples of haematinon.[13]  Other isolated examples of purpurine are known to exist made by competitive jewelers of the time, but no documented recipe has been found. [14] Apparently, Petuchov took the Imperial Glassworks formula for purpurine to his grave. As fame grew for Fabergé, their version is the one that became familiar to a growing clientele in Great Britain and in the United States. When the February Revolution of 1917 brought an end to the Romanov dynasty in Russia, Carl Fabergé fled the country, his company disbanded. In the west, the Fabergé name only multiplied in prestige among the elite and wealthy and items made with purpurine continue to command stratospheric prices.

Significant analytical work has been done on the ancient haematinon as well as purpurines of the Imperial Glassworks and of Fabergé. [3,5] The technical differences could easily be the subject of a separate treatment; suffice it to say that knowing the composition of a glass is not the same as knowing the recipe. (Just as knowing the composition of a cake does not mean that one can bake it.) The exact method for making the glass must have involved a long period in which snowflake-like crystals of cuprous oxide (Cu2O) would be encouraged to form, grow and spread throughout the glass forming a tightly interlocking network in the glass. One interesting point is that unlike many other opaque glasses, the ingredients of purpurine do not include a discrete opacifier; it is a clear glass base, which is so loaded with deep red cuprous oxide crystals that light does not pass through even small or thin pieces of the material. Another point is that this glass was not suitable for blowing on a blowpipe and therefore did not take forms typically expected for glass. Perhaps because of this, it has been largely overlooked.

The history of purpurine is a reminder of the fragility of human knowledge; it was discovered in ancient times, lost, rediscovered and lost again in modern times.


[1] Peter Carl Fabergé =Карл Густавович Фаберже. For more, see Abraham Kenneth Snowman, The Art of Carl Fabergé, Faber & Faber, 1974.(original ed 1953). Also see
 https://en.wikipedia.org/wiki/Peter_Carl_Faberg%C3%A9
[2] Gowlett, J.A.J.: High Definition Archaeology: Threads Through the Past, Routledge, 1997, pp. 276–277. Quoted in https://en.wikipedia.org/wiki/Purpurin_(glass)
[3] Rösch, Cordelia; Hock, Rainer; Schüssler, Ulrich; Yule, Paul; Hannibal, Anne. “Electron Microprobe Analysis and X-ray Diffraction Methods in Archaeometry: Investigations on Pre-Islamic Beads from the Sultanate of Oman” in: European Journal of Mineralogy, 9 (1997), 763–783. (Specifically, beads found at Tissamaharama, pp. 771,772). http://archiv.ub.uni-heidelberg.de/propylaeumdok/volltexte/2009/305
[4] Natural History, xxxvi, LXVII, 198.
[5] For more, see http://www.30giorni.it/articoli_id_10283_l3.htm
[6] RR Harding, S Hornytzkyj, A. R. Date. “The composition of an opaque red glass used by Fabergé”in the Journal of Gemmology, 1989. No.5, pp. 275-287.
[7] Klaproth M.H., Beiträge zur chemischen Kenntnis der Mineralkörper Vol. VI (1815), p. 136
[8] Schubarth. "Einige Notizen über rothes und blaues Glas." Journal für Praktische Chemie Vol. 3 (1844), pp. 300-316
[9] Pettenkofer, M. "Ueber einen antiken rothen Glasfluss (Haematinon) und über Aventurin-Glas." Abhandlungen der naturw.-techn. Commission der k. b. Akad. der Wissensch. I. Bd. München, literar.-artist. Anstalt, 1856. Also see https://en.wikipedia.org/wiki/Purpurin_(glass)
[10] Alessio Matteoli https://nononsensejewellery.wordpress.com/tag/purpurin-faberge/ , for more on Matteoli see http://www.aiellomosaics.com/about-mosaics/techniques-and-materials/roman-or-byzantineglass-or-marble-tilesmicromosaic-or-glass-enamels/ .  On Michelangelo Barberi, see Renata Battaglini Di Stasio, “Michelangelo Barberi” in Dizionario Biografico degli Italiani – v. 6 (1964)  http://www.treccani.it/enciclopedia/michelangelo-barberi_(Dizionario_Biografico)/
[11] Catalogue Special de la Section Russe a l'Exposition Universelle de Paris en 1867, p. 44, Classe 16, no.111.
[12] See http://art.thewalters.org/detail/77444/pair-of-tazzas/
[13] Op cit. RR Harding, S Hornytzkyj, A. R. Date, 1989.
[14] For more on competitive jeweler’s purpurine, see: Géza von Hapsburg: “Some of Fabergé’s Other Russian Competitors” in Fabergé, Imperial Craftsman and His World, London: Booth-Clibborn, 2000, pp. 323-325.